Skip to main content

Domain Adaptation of MRI Scanners as an Alternative to MRI Harmonization

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer (DART 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14293))

Included in the following conference series:

Abstract

Combining large multi-center datasets can enhance statistical power, particularly in the field of neurology, where data can be scarce. However, applying a deep learning model trained on existing neuroimaging data often leads to inconsistent results when tested on new data due to domain shift caused by differences between the training (source domain) and testing (target domain) data. Existing literature offers several solutions based on domain adaptation (DA) techniques, which ignore complex practical scenarios where heterogeneity may exist in the source or target domain. This study proposes a new perspective in solving the domain shift issue for MRI data by identifying and addressing the dominant factor causing heterogeneity in the dataset. We design an unsupervised DA method leveraging the maximum mean discrepancy and correlation alignment loss in order to align domain-invariant features. Instead of regarding the entire dataset as a source or target domain, the dataset is processed based on the dominant factor of data variations, which is the scanner manufacturer. Afterwards, the target domain’s feature space is aligned pairwise with respect to each source domain’s feature map. Experimental results demonstrate significant performance gain for multiple inter- and intra-study neurodegenerative disease classification tasks. Source code available at (https://github.com/rkushol/DAMS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackaouy, A., Courty, N., Vallée, E., Commowick, O., Barillot, C., Galassi, F.: Unsupervised domain adaptation with optimal transport in multi-site segmentation of multiple sclerosis lesions from mri data. Front. Comput. Neurosci. 14, 19 (2020)

    Article  Google Scholar 

  2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on CVPR, pp. 248–255 (2009)

    Google Scholar 

  3. Dinsdale, N.K., Jenkinson, M., Namburete, A.I.L.: Unlearning scanner bias for MRI Harmonisation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 369–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_36

    Chapter  Google Scholar 

  4. Ellis, K.A., Bush, A.I., Darby, D., De Fazio, D., Foster, J., Hudson, P., et al.: The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 21(4), 672–687 (2009)

    Article  Google Scholar 

  5. Fortin, J.P., et al.: Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167, 104–120 (2018)

    Article  Google Scholar 

  6. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  7. Gebre, R.K., et al.: Cross-scanner harmonization methods for structural MRI may need further work: a comparison study. Neuroimage 269, 119912 (2023)

    Article  Google Scholar 

  8. Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    Chapter  Google Scholar 

  9. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on CVPR, pp. 770–778 (2016)

    Google Scholar 

  11. Jack, C.R., Jr., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  12. Kalra, S., et al.: The canadian als neuroimaging consortium (calsnic)-a multicentre platform for standardized imaging and clinical studies in ALS. MedRxiv (2020)

    Google Scholar 

  13. Kushol, R., Luk, C.C., Dey, A., Benatar, M., Briemberg, H., et al.: Sf2former: amyotrophic lateral sclerosis identification from multi-center MRI data using spatial and frequency fusion transformer. Comput. Med. Imaging Graph. 108, 102279 (2023)

    Article  Google Scholar 

  14. Kushol, R., Masoumzadeh, A., Huo, D., Kalra, S., Yang, Y.H.: Addformer: Alzheimer’s disease detection from structural mri using fusion transformer. In: IEEE 19th International Symposium on Biomedical Imaging, pp. 1–5. IEEE (2022)

    Google Scholar 

  15. Liu, M., et al.: Style transfer using generative adversarial networks for multi-site MRI Harmonization. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 313–322. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_30

    Chapter  Google Scholar 

  16. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  17. Malone, I.B., et al.: Miriad-public release of a multiple time point Alzheimer’s MR imaging dataset. Neuroimage 70, 33–36 (2013)

    Article  Google Scholar 

  18. Orbes-Arteaga, M., et al.: Multi-domain adaptation in brain MRI through paired consistency and adversarial learning. In: Wang, Q., et al. (eds.) DART/MIL3ID -2019. LNCS, vol. 11795, pp. 54–62. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33391-1_7

    Chapter  Google Scholar 

  19. Panfilov, E., Tiulpin, A., Klein, S., Nieminen, M.T., Saarakkala, S.: Improving robustness of deep learning based knee MRI segmentation: mixup and adversarial domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0 (2019)

    Google Scholar 

  20. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1406–1415 (2019)

    Google Scholar 

  21. Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. MIT Press, Cambridge (2008)

    Book  Google Scholar 

  22. Sadri, A.R., et al.: MRQY-an open-source tool for quality control of MR imaging data. Med. Phys. 47(12), 6029–6038 (2020)

    Article  Google Scholar 

  23. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  24. Tian, D., et al.: A deep learning-based multisite neuroimage harmonization framework established with a traveling-subject dataset. NeuroImage 257, 119297 (2022)

    Article  Google Scholar 

  25. Wachinger, C., Reuter, M., Initiative, A.D.N., et al.: Domain adaptation for Alzheimer’s disease diagnostics. Neuroimage 139, 470–479 (2016)

    Article  Google Scholar 

  26. Wang, R., Chaudhari, P., Davatzikos, C.: Embracing the disharmony in medical imaging: a simple and effective framework for domain adaptation. Med. Image Anal. 76, 102309 (2022)

    Article  Google Scholar 

  27. Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., et al.: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med. Image Anal. 63, 101694 (2020)

    Article  Google Scholar 

  28. Wolleb, J., et al.: Learn to ignore: domain adaptation for multi-site MRI analysis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 725–735. Springer, Cham (2022)

    Google Scholar 

  29. Yagis, E., et al.: Effect of data leakage in brain MRI classification using 2D convolutional neural networks. Sci. Rep. 11(1), 1–13 (2021)

    Article  Google Scholar 

  30. Zeng, L.L., et al.: Gradient matching federated domain adaptation for brain image classification. IEEE Trans. Neural Networks Learn. Syst. (2022)

    Google Scholar 

  31. Zhu, Y., Zhuang, F., Wang, D.: Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5989–5996 (2019)

    Google Scholar 

Download references

Data use declaration and acknowledgment

ADNI1, ADNI2, and AIBL neuroimaging data were collected from the ADNI portal (adni.loni.usc.edu) through a standard application process. The MIRIAD dataset was obtained from (http://miriad.drc.ion.ucl.ac.uk). This study has been supported by the Canadian Institutes of Health Research (CIHR), ALS Society of Canada, Brain Canada Foundation, Natural Sciences and Engineering Research Council of Canada (NSERC), and Prime Minister Fellowship Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafsanjany Kushol .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1769 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kushol, R., Frayne, R., Graham, S.J., Wilman, A.H., Kalra, S., Yang, YH. (2024). Domain Adaptation of MRI Scanners as an Alternative to MRI Harmonization. In: Koch, L., et al. Domain Adaptation and Representation Transfer. DART 2023. Lecture Notes in Computer Science, vol 14293. Springer, Cham. https://doi.org/10.1007/978-3-031-45857-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45857-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45856-9

  • Online ISBN: 978-3-031-45857-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics