
A Schedule of Duties in the Cloud Space Using a Modified

Salp Swarm Algorithm

Hossein Jamali, Ponkoj Chandra Shill,

David Feil-Seifer, Frederick C. Harris, Jr., Sergiu M. Dascalu
Department of Computer Science and Engineering

University of Nevada, Reno

Reno, NV, USA
{hossein.jamali,ponkoj}@nevada.unr.edu,

{dave,fred.harris,dascalus}@cse.unr.edu

Abstract. Cloud computing is a concept introduced in the information technology era,

with the main components being the grid, distributed, and valuable computing. The

cloud is being developed continuously and, naturally, comes up with many challenges,

one of which is scheduling. A schedule or timeline is a mechanism used to optimize

the time for performing a duty or set of duties. A scheduling process is accountable

for choosing the best resources for performing a duty. The main goal of a scheduling

algorithm is to improve the efficiency and quality of the service while at the same

time ensuring the acceptability and effectiveness of the targets. The task scheduling

problem is one of the most important NP-hard issues in the cloud domain and, so far,

many techniques have been proposed as solutions, including using genetic algorithms

(GAs), particle swarm optimization, (PSO), and ant colony optimization (ACO). To

address this problem, in this paper one of the collective intelligence algorithms, called

the Salp Swarm Algorithm (SSA), has been expanded, improved, and applied. The

performance of the proposed algorithm has been compared with that of GAs, PSO,

continuous ACO, and the basic SSA. The results show that our algorithm has gener-

ally higher performance than the other algorithms. For example, compared to the basic

SSA, the proposed method has an average reduction of approximately 21% in

makespan.

Keywords: Cloud Computing, Task Scheduling, Salp Swarm Algorithm.

1 INTRODUCTION

Today, modern computing methods have attracted the attention of researchers in many

fields such as cloud computing, artificial intelligence, and machine learning by using tech-

niques including artificial neural networks in building air quality prediction models that can

estimate the impact of climate change on future summer trends [1]. A computational science

algorithm is used in this article to determine the schedule of duties in the cloud.

Cloud computing has brought about the availability of tools that provide extensive com-

puting resources on the internet platform. Users can submit their requests for various re-

sources, such as CPU, memory, disk, and applications, to the cloud provider. The provider

then offers the most suitable resources, which meet the user's requirements and offer bene-

fits to the resource owners, based on the price that they can afford to pay [2]. In cloud

computing, the main entities are users, resource providers, and a scheduling system whose

main body has been proposed for the users' tasks and timeline strategy [3].

Cloud computing consumers rent infrastructure from third-party providers instead of

owning it. They opt for this to avoid extra costs. Providers typically use a "pay-as-you-go"

model, allowing customers to meet short-term needs without long-term contracts, thus re-

ducing costs. [4].

Behind the numerous benefits of cloud computing, there are many challenges too. The

most important is the task scheduling problem or resource allocation to the users' requests.

The targets of task scheduling in cloud computing are to provide operating power, the opti-

mal timeline for users, and service quality simultaneously. The specific targets related to

scheduling are load balance, service quality, economic principles, the best execution time,

and the operating power of the system [5]. Cloud computing has three timelines: resources,

workflow, and tasks. Resource scheduling involves mapping virtual resources to physical

machines. Workflow scheduling ensures the orderly flow of work. Task scheduling assigns

tasks to virtual resources. Task scheduling methods can be concentrated or distributed, ho-

mogeneous or heterogeneous, and performed on dependent or independent tasks.

Task scheduling in cloud computing has two types based on the characteristic of the tasks:

• Static: In static scheduling, the tasks reach the processor simultaneously and are

scheduled on accessible resources. The scheduling decisions are made before

reaching the tasks and the processing time after doing the entire run of duty is

updated. This type of scheduling is mostly employed for tasks that are sent contin-

uously [6]; and

• Dynamic: In dynamic scheduling, the number of tasks, the location of the virtual

machines, and the method for resource allocation are not constant, and the input

time of tasks before sending them is unknown [6].

Scheduling the mechanism of dynamic algorithms compared to static algorithms is better

but the overhead of the dynamic algorithm is quite significant [7]. Dynamic scheduling can

be done in two ways; in batch and online modes. In batch mode, the tasks are lying in a line,

gathered in a set, and after a certain time, scheduled. In the online mode, when the tasks

reach the system, they are scheduled [6].

The task scheduling problem in cloud computing focuses on efficiently distributing tasks

among machines to minimize completion time [8]. Proper task arrangement has numerous

benefits, including reduced energy consumption, increased productivity, improved distri-

bution across machines, shorter task waiting times, decreased delay penalties, and overall

faster task completion [9].

The task scheduler plays a crucial role in efficiently scheduling computing actions and

logically allocating computing resources in IaaS cloud computing. Its objective is to assign

tasks to the most suitable resources to achieve specific goals. Selecting an appropriate

scheduling algorithm is essential to enhance resource productivity while maintaining a high

quality of service (QoS). Task scheduling involves optimizing the allocation of subtasks to

virtual servers in order to accomplish the task schedule's objective. This area of research

continues to receive significant attention [10].

Efficient task planning in cloud computing is essential to minimize fetch time, waiting

time, computing time, and resource usage. Task scheduling is crucial for maximizing cloud

productivity, meeting user needs, and enhancing overall performance. Its primary goal is to

manage and prioritize tasks, reducing time and preventing work failures while meeting

deadlines. Task scheduling optimizes the cloud computing system for improved calculation

benefits, high performance, and optimal machine output. The scheduling algorithm distrib-

utes work among processors to maximize efficiency and minimize workflow time [11].

The rest of this paper is organized as follows: Section 2 covers related work; Section 3

provides details of the SDSA optimization algorithm; Section 4 describes our proposed

method, including the expansion and improvement of the salp algorithm; Section 5 focuses

on the algorithm’s target, the fitness function; Section 6 presents the results of our simula-

tion; and, finally, Section 7 contains the conclusions of our work.

2 RELATED WORKS

Ghazipour et al. [12] have proposed a task scheduling algorithm so the tasks existing in the

grid are allocated to accessible resources. This algorithm is based on the ACO algorithm,

which is mixed with the scheduling algorithm right to choose so that its results are used in

the ACO algorithm. The main goal of their article is to minimize the total finish time

(makespan) for setting up tasks that have been given [12].

In their research on task scheduling in cloud computing, Sharma and Tyagi [13] exam-

ined nine heuristic algorithms. They conducted comparative analyses based on scheduling

parameters, simulation tools, observation domain, and limitations. The results indicated the

existence of a heuristic approach that satisfies all the required parameters. However, con-

sidering specific parameters such as waiting time, resource utilization, or makespan for each

task or workflow individually can lead to improved performance. [13].

In 2019, Mapetu et al. [14] researched the "binary PSO algorithm for scheduling the tasks

and load power in cloud computing". They introduced a binary version of the PSO algorithm

named BPSO with lower complexity and cost for scheduling the tasks and load power in

cloud computing, to minimize waiting time, and imbalance degree while minimizing

resource use. The results showed that the proposed algorithm presents greater task schedul-

ing and load power than existing heuristic algorithms [14].

Saeedi et al. [15] studied the development of the multi-target model of PSO for schedul-

ing the workflow in the cloud areas. They proposed an approach for solving the scheduling

problem considering four contrasting goals (i.e., minimizing the cost, waiting time, energy

consumption, and maximizing reliability). The results showed that the proposed approach

had a better performance compared to LEAF and EMS-C algorithms [15].

Zubair et al. [10] presented an optimal task scheduling method using the modified sym-

biotic organisms search algorithm (G_SOS) and aimed to minimize the makespan of the

tasks, costs, response time, and imbalance degree, and improve the convergence speed. The

performance of the proposed method using CloudSim (a simulator tool) was evaluated and

according to the simulation results, the proposed technique has better performance than the

SOS and PSO-Simulated Annealing (PSO-SA) in terms of the convergence speed, cost,

imbalance degree, response time, and makespan. The findings confirm the suggested

G_SOS approach [10].

Rajagopalan et al. [16] introduced an optimal task-scheduling method that combines the

firefly optimization algorithm with a genetics-based evolutionary algorithm. This hybrid

algorithm creates a powerful collective intelligence search algorithm. The proposed method

excels in minimizing the makespan for all tasks and quickly converges to near-optimal so-

lutions. The results demonstrated that this hybrid algorithm outperformed traditional algo-

rithms like First in, First Out (FIFO) and genetics. However, a potential drawback of this

method is the increased overload resulting from the sequential use of two algorithms [16].

3 SSA OPTIMIZATION ALGORITHM

This section briefly describes the SSA optimization algorithm proposed by Mirjalini Al

which is an extension of the standard SSA algorithm [17]. salps are a type of Salpidae family

and have a transparent and barrel-shaped body. Their bodies are very similar to jellyfish.

They still move the same as jellyfish, and water is pumped from the middle of the body as

a motive force to move forward [17]. The shape of salp is shown in Figure 1(a).

The biological study of these animals is just starting because it is so difficult to capture

them and maintain them in laboratories. One of the most intriguing habits of salps is their

tendency to swarm. The salps commonly form a chain in the deep oceans. This chain is

shown in Figure 1(b). Although the primary cause of this behavior is unknown, some re-

searchers think that it is carried out through quick coordinated movements and searches to

achieve improved movement [17].

Fig. 1. (A) Illustration of a salp. (B) Salp chain structure. [17].

To model mathematically the salp chains, first, the population is divided into two groups:

leaders and followers. The leader is in front of the chain, while the remaining are considered

the followers. As seen from their names, the leader guides the group and the followers fol-

low each other [17].

Like other techniques based on the swarm, the location of salps in a search space is n-

dimensional, where n is the number of variables in a problem and known; therefore, the

location of all salps is stored in the two-dimensional matrix x. Also, it is assumed that a

food source, F, exists in the search space as a swarm target [17].

 Equation 1 has been proposed for updating the location of the leader as follows:

 (1)

Where 𝑥𝑗
1 shows the location of the first salp (leader) in the 𝑗 dimension, 𝐹𝑗 is the location

of the food source in the 𝑗 dimension, 𝑢𝑏𝑗 identifies the upper boundary of the 𝑗 dimension,

𝑙𝑏𝑗 identifies the lower boundary of the 𝑗 dimension, and 𝑐1, 𝑐2, and 𝑐3 are random numbers

(between 0,1) [17].

Equation 1 shows that the leader just updates its location according to the food source.

The 𝑐1 the constant is the most important parameter in the SSA because it creates a balance

between exploration and detection and is defined as equation 2:

 𝑐1 = 2𝑒−
(
4𝑙

𝐿
)
2

 (2)

Here, 𝑙 is the current iteration and 𝐿 is the maximum iteration.

The parameters of 𝑐2 and 𝑐3 are the random numbers which are uniformly produced in

the range [0.1]. They determine if the latter location in the 𝑗 dimension should be infinite

positive or infinite negative, as well as determine the step size.

To update the followers' location, equation 3 is used (Newton's law of motion):

 𝑥𝑗
𝑖 =

1

2
𝑎𝑡2 + 𝑣0𝑡 (3)

If 𝑖 ≥ 2, 𝑥𝑗
𝑖 shows a salp follows the 𝑖location in the 𝑗 dimension, 𝑡 is the time, and 𝑣0 is

the initial velocity; 𝑎 =
𝑣𝑓𝑖𝑛𝑎𝑙

𝑣0
 and 𝑣 =

𝑥−𝑥0

𝑡
. Since the time is iterated in the optimization,

the difference between the iterations is equal to 1 and, considering 𝑣0 = 0, this relation is

expressed as equation 4.

 𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1) (4)

Here, 𝑖 ≥ 2 and 𝑥𝑗
𝑖 shows a salp follows the 𝑖location in the 𝑗 dimension.

The salp chains can be simulated by equations 1 and 4. In the SSA model, the followers

follow the salp leader. The leader also moves towards the food source; therefore, if the food

source is substituted for the global optimization, the salp chain automatically moves towards

it. However, there is a problem that global optimization is unknown in the optimization

problems. In this way, it is assumed that the best solution obtained so far is the global opti-

mum, which is assumed as a food source for following the salp chain.

The pseudo-code for the SSA algorithm is shown in Figure 2 [17]. This figure shows that

the SSA algorithm begins the global optimum by starting several salps at random locations.

Then, each fitting related to the salps are calculated and the location where they have ac-

quired the best fitting is allocated to the variable 𝐹 as a food source followed by the salp

chain. Meanwhile, the value of 𝑐1 constant is updated by equation 2. For every dimension,

the location of the leader is updated by relation 1 and that of the followers by equation 4. If

each salp goes out of the search space, they are returned to the border again. All the men-

tioned stages except for the initial value are iterated till consent is obtained.

The computing complexity of the SSA algorithm is considered as 𝑂(𝑡(𝑑 ∗ 𝑛 + 𝐶𝑜𝑓 ∗

𝑛)) where 𝑡 shows the number of iterations, 𝑑 is that of variables (dimension), 𝑛 is that of

solutions, and 𝐶𝑜𝑓 is a target cost of the function.

Initializes the salp population xi (i = 1,2, ..., n) considering ub and lb

While (end condition is not satisfied)

Calculate the fitness of each search agent(salp)
F= the best search agent(salp)

Update c1 by Eq. (2)

for each salp (xi)
If (i==1)

Update the position of the leading salp by Eq. (1)

else

Update the position of the, follower salp by Eq. (4)

end

end

Amend the salps based on the upper and lower bounds of variables.

end

returnF

Fig. 2. Pseudo-code of the salp swarm algorithm. [17].

4 PROPOSED METHOD

Our proposed method for scheduling the tasks of the virtual machines in the cloud compu-

ting area uses an optimized SSA based on the fitness function. First, a set of random answers

created is assigned as the initial population. Each member of this set is called a salp. In the

first stage, the fitness of salps produced randomly is calculated by the target function and

the best slap is chosen among all salps and its location is determined by the location of the

food source. In the following, the salps move towards the food source until they achieve the

best food source (i.e., solution). In this algorithm, each salp is represented as a solution that

moves for searching based on a mechanism in the problem space. In the suggested method,

the salps are divided into two groups, the leaders and the followers. One group of salps

named leader salps updates its location according to the food source and tries to move to-

wards the existing food source and discover a better solution. If they find a better solution

than the existing food source, the location of the leader salp is considered as its new loca-

tion. The group salps follow each other, and if they discover a better solution for the food

source location, the location of the salp follower is considered the new location of the food

source.

4.1 The task scheduling problem in the cloud area

The task scheduling problem in the cloud is allocating the settings of tasks to a set of

sources. We have assumed a set of 𝑛 tasks, 𝑇 = (𝑇1. 𝑇2. 𝑇3. ⋯ . 𝑇𝑛), and of 𝑚 sources, which

are virtual machines in targeted source research, 𝑉 = (𝑉1. 𝑉2. 𝑉3. ⋯ . 𝑉𝑚). The set of 𝑇 in-

cludes the tasks which should be scheduled. Each task should be processed by virtual ma-

chines so that the completion time of all tasks is minimized as much as possible.

The main goal of task scheduling is to allocate optimally to the sources so that the lowest

completion time of the tasks (i.e., makespan) and the lowest cost is obtained. The makespan

shows the total required time for implementing all the tasks. The main goal of our research

is to minimize the makespan using the modified SSA.

4.2 The proposed coding method

Assume that an array of 200 tasks exists and each task has a value between 1-15. For ex-

ample, if the second value of this array is 4, it shows that task 2 has been allocated to the

virtual machine 4 and, if the seventh value of the array is 14, it means that, task 7 has been

allocated to the virtual machine 14. Similarly, all the tasks 𝑇1 to 𝑇200 are allocated to virtual

machines 𝑉1-𝑉15. In Figure 3, an example of allocating tasks to virtual machines is depicted.

𝑇1 𝑇2 𝑇3 ⋯ 𝑇𝑖 ⋯ 𝑇200

𝑉2 𝑉4 𝑉14 ⋯ 𝑉1 ⋯ 𝑉7

Fig. 3. Allocation of tasks to virtual machines.

In the suggested algorithm, solutions are shown by a salp chains. Each solution of the sug-

gested algorithm is shown by an array of natural numbers. The locations of all salps are

stored in a 2-dimensional matrix named 𝑥. For instance, in a problem with 𝑛 tasks and 𝑚

virtual machines, the rows of a two-dimension matrix are considered as the number of the

salp population. It means that the location of each salp is restored in a row of a matrix. The

columns of the matrix are equal to 𝑛. Also, the content of each cell of the array shows the

virtual machine number, which can be a number between 1 to 𝑚. Figure 4 shows an example

of a salp.

Fig. 4. An example of a salp.

To begin the work, this salp can be produced as a desired number where this number is the

same as the primary population of the algorithm that is adjusted. First, the population is

randomly generated and stored in a two-dimensional matrix where its rows are identical to

the number of salps and its columns equal to those of tasks identified for the scheduling.

After generating the primary population of salps in the range of the problem answer, the

fitness of all salps is assessed by all salps and the salp with the best fitness is determined.

In this algorithm, it is assumed that a food source named 𝐹 exits in a search space as a

swarm target that all salps try to move towards it.

In the first stage of this algorithm, the location of the best generated salp (the best solu-

tion) is considered as the food source.

In the next stage of this algorithm, the salps are divided into two groups of leaders and

followers. The number of salps is considered as the leader salp group and the remaining as

the follower one. In the proposed algorithm, 50% of salps are considered as the leader group

and the remaining 50% as followers. The location of the leader group is updated by equation

5.

 𝑥𝑗
𝑖 = 𝐹𝑗 + 𝛼𝑅𝑎𝑛𝑑𝑛() (5)

Where 𝑥𝑗
𝑖 is the location of the leader salp 𝑖, 𝐹𝑗 the location of the food source in the 𝑗

dimension, 𝛼 the constant of the random moving step in the range of [0,1] that is adjusted

by the targeted problem, and 𝑅𝑎𝑛𝑑𝑛() a random number with a normal distribution and

determines a random step with a normal distribution for the leader group. Equation 6 up-

dates the location of the follower group.

 𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1) + 𝑐1𝑅𝑎𝑛𝑑𝑛() (6)

Where 𝑥𝑗
𝑖 is the location of the follower salp 𝑖 in the 𝑗 dimension. The constant 𝑐1 creates a

balance between the exploration and discovery by generating an adaptive step, and this

constant decrease consistently during the iterations; so, it leads to higher discovery in the

first iterations and higher exploration in the end iterations if the algorithm, 𝑅𝑎𝑛𝑑𝑛() is a

random number with a normal distribution and determines a random step with this distribu-

tion for the leader group. The parameter 𝑐1 is defined in equation 7 and is updated in each

iteration.

 𝑐1 = 2𝑒−
(
4𝑙

𝐿
)
2

 (7)

Here, 𝑙 is the current iteration and 𝐿 the maximum of iterations.

In each iteration of the algorithm, after updating, first, the location of each salp is ex-

plored; if each salp goes out of the search space, it returns to the borders. Next, its fitness

has been assessed based on the target function; if its fitness has been better than that of the

food source, the location of the desired salp has been substituted for that of the food source.

It is noted that in the substitution of the salp location for the food source, there is a difference

between the leader group and the follower group when swapping. In the case of the leader

group, even if the fitness of the leader salp and food source are identical, the location of the

leader salp is substituted for the food source, because the salps with equal fitness have dif-

ferent locations, and this mechanism is an effective alternative for diversifying a search

space, releasing from the local optimum, as well as discovering accurately surrounding the

existing food source.

Based on this, the population of the leader group updated its location using the location

of the food source. When the location of each leader salp group is substituted for that of the

food source, the latter group has updated its location using the new location of the food

source. Figure 5 depicts the algorithm’s pseudo-code of the optimized SSA.

The stages of the algorithm until reaching the end are continued. In the proposed algo-

rithm, the condition for finishing the algorithm is the number of iterations.

Initializes the salp population xi(i = 1,2, ... , n) considering ub and lb

Calculate the fitness of each search agent(salp) from the fitness function.

 F= the best search agent(salp)

Initialize α

While (end condition is not satisfied)

Update c1 by Eq. (7)

For each salp (xi)

If (i<=N* 0.5)

Update the position of the leading salp by Eq. (5)

Amend the sales based on the upper and lower bounds of variables.

Calculate the fitness of the leading salp from the fitness function.

If (the fitness of the leading salp <= the fitness of the F)

F= position of the leading salp

End If

else

Update the position of the follower salp by Eq. (6)

Amend the salps based on the upper and lower bounds of variables.

Calculate the fitness of the follower salp from the fitness function.

If (the fitness of the follower salp < the fitness of the F)

F= position of the follower salp

End If

End If

End For

End While

returnF

Fig. 5. The pseudo-code of the modified SSA.

5 FITNESS FUNCTION

The main goal of this research is to minimize the makespan, one of the most important

targets for the task scheduling problem in the cloud areas. An example of task samples and

task sizes is given in Table 1 and another is shown in Table 2 for virtual machines and the

processor speed as individual values.

Table 1. An example of the tasks and their size.

Tasks 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 𝑇9 𝑇10 𝑇11 𝑇12

Size 18 15 19 24 33 41 22 12 30 16 13 32

Table 2. An example of virtual machines and their speed.

Virtual machine
number

1 2 3 4 5

Processor speed 3.4 2.4 3.2 1.8 2.2

We aim to reduce the completion time of tasks in this research. This time duration is the

longest completion time among virtual machines. If we consider 𝑇𝑖 as the task size of 𝑖 and

𝐶𝑗 as the processor speed of the virtual machine 𝑗, we can obtain the makespan 𝑖 from equa-

tion 8.

 𝑡𝑒𝑥𝑒(𝑖. 𝑗) = 𝑇𝑖 𝐶𝑗⁄ (8)

According to the allocated tasks for each resource and the length of desired tasks, there has

been a completion time for tasks relative to the processor speed of the virtual machine for

each of them.

For instance, assume that the tasks 𝑇3, 𝑇6, 𝑇10, 𝑇8 are allocated to virtual machine 2, the

makespan of each task delivered to virtual machine 2 can be calculated as follows:

𝑡𝑒𝑥𝑒(3.2) =
19

2.4
= 7.9 𝑡𝑒𝑥𝑒(6.2) =

41

2.4
= 17.1

𝑡𝑒𝑥𝑒(10.2) =
16

2.4
= 6.7 𝑡𝑒𝑥𝑒(8.2) =

12

2.4
= 5

So, the completion time of tasks calculated on virtual machine 2 is:

𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(2) = 7.9 + 17.1 + 6.7 + 5 = 36.7

Similarly, the times for all virtual machines can be computed from the assigned tasks. The

longest completion time of tasks amongst that for all virtual machines is calculated by equa-

tion 9:

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀𝑎𝑥{𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑗)}1 ≤ 𝑗 ≤ 𝑚 (9)

In equation 9, 𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑗) shows the completion time of tasks allocated to the virtual ma-

chine 𝑗. Minimizing equation 9 (i.e., the completion time of all tasks (makespan)) is the

main target of this research.

6 SIMULATION AND RESULTS

In this section, the performance of the proposed algorithm (Modified salp Swarm Algo-

rithm) is evaluated for solving the task scheduling problem in the cloud area and compared

with other algorithms such as Standard salp Swarm Algorithm (SSA), Ant Colony Optimi-

zation (ACOr), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) in mul-

tiple scenarios[17]. MATLAB software has been used for simulation. The parameters and

their initial values of the compared algorithms have been given in Table 3 and their descrip-

tion in Table 4. The simulation was run for four scenarios with parameters shown in Table

5 and the findings of each scenario are depicted in Figure 6 using associated the chart.

Table 3. Parameters and the initial values of the compared algorithms.

Algorithm Parameters and the initial values of the algorithms

GA nPop=40, MaxIt=500, pc=0.8, pm=0.3, mu=0.02, nc=32,

nm=12, beta=8, RWS=0

PSO nPop=40, MaxIt=500, C1=2, C2=2, w=0.7

ACO nPop=40, MaxIt=500, nSample=40, q=0.9, zeta=0.1

SSA nPop=40, MaxIt=500

Modified SSA nPop=40, MaxIt=500, α=0.19

Table 4. description of parameters used for comparing the algorithms.

For all MaxIt=Maximum Number of Iterations nPop=Population Size

GA

Pc = Crossover Percentage nc = Number of Offsprings (Parnets)

pm = Mutation Percentage nm = Number of Mutants mu =

Mutation Rate

beta =Roulette Wheel Selection (RWS) Pressure RWS = 0 or 1

PSO c1 = Personal Learning Coefficient w = Inertia Weight c2 = Global

Learning Coefficient

ACOR nSample = Archive Size, q=Intensification Factor (Selection

Pressure) zeta=Deviation-Distance Ratio

Modified
SSA

α= Random step coefficient

Table 5. parameters of the scenarios.

Scenario The number of vir-
tual machines

The number of
tasks

First 10 150-200-250-300

Second 15 150-200-250-300

Third 20 150-200-250-300

Fourth 25 150-200-250-300

In the experiments, all algorithms used a number of 40 primary populations and a maximum

of 500 iterations. Each scenario was run 20 times to obtain the results. The primary objective

was to examine and minimize the makespan measure across different scenarios.

Table 6. data results of the first scenario.

No. of Tasks

Algorithm

300

250

200

150

SSA 308.00 258.34 212.50 156.15

ACOr 282.69 236.85 192.44 144.69

PSO 275.05 230.64 186.71 139.91

GA 271.71 226.82 184.80 138.48

Average 284.36 238.16 194.61 144.80

STD 16.4148 14.07 12.68 8.014

MSSA 269.80 225.39 182.41 136.09

Average

Improvement in MSSA

5.40%

5.66%

6.68%

6.40%

Fig. 6. Performance output for the four scenarios, comparing MSSA with other algorithms; MSSA

shows lower calculation amount, which is desirable as lower values indicate improved efficiency in

minimizing makespan for cloud computing task scheduling.

The results of our simulation study using an Modified Salp Swarm Algorithm (MSSA) for

scheduling cloud computing tasks have been analyzed and compared with other well-known

optimization algorithms, specifically the Standard salp Swarm Algorithm (SSA), (ACOr),

(PSO), and (GA). The simulation results demonstrate that the proposed MSSA algorithm

outperforms other algorithms in terms of task completion time.

As shown in Table 6, the MSSA algorithm achieved an average completion time that

was 5.40%, 5.66%, 6.68%, and 6.40% better than the average completion time of SSA,

ACOr, PSO, and GA, respectively. Furthermore, the standard deviation of the MSSA algo-

rithm was lower than that of other algorithms, indicating more consistent performance. The

findings of this study provide valuable insights into the efficiency of different optimization

algorithms for scheduling cloud computing tasks. The MSSA algorithm has shown substan-

tial potential in reducing task completion time and improving the overall performance of

cloud computing systems. Therefore, it can be concluded that the MSSA algorithm can be

a useful tool for scheduling cloud computing tasks in real-world scenarios.

7 CONCLUSION

The results from the stated scenarios show that the proposed algorithm had better perfor-

mance compared to the other algorithms to solve the task scheduling problem in all four

scenarios of cloud computing.

The results show that the makespan is reduced by increasing the number of virtual ma-

chines and vice versa. They also indicate that the optimized salp swarm algorithm has in-

creased performance compared to the basic one. The outputs of all scenarios were similar

and the MSSA is better in all case. As a result, the suggested method has shown better

performance in all scenarios to solve the task scheduling problem in the cloud computing

domain.

In addition, the findings of this study provide valuable insights into the efficiency of

different optimization algorithms for scheduling cloud computing tasks. The MSSA algo-

rithm has shown substantial potential in reducing task completion time and improving the

overall performance of cloud computing systems. Therefore, it can be concluded that the

MSSA algorithm can be a useful tool for scheduling cloud computing tasks in real-world

scenarios.

Overall, while the study's results demonstrate the effectiveness of the MSSA algorithm

in reducing task completion time and improving the overall performance of cloud compu-

ting systems, it is important to consider the limitations and scope of the study's findings.

Future work could explore alternative performance metrics, evaluate the algorithm's robust-

ness and scalability, and investigate its suitability for different cloud computing scenarios.

Acknowledgment

This material is based in part upon work supported by the National Science Foundation

under grant #DUE-2142360. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily reflect the views

of the National Science Foundation.

References

1. Mosadegh, E., Ashrafi, K., Motlagh, M. S., & Babaeian, I. (2021). Modeling the Regional Effects

of Climate Change on Future Urban Ozone Air Quality in Tehran, Iran. ArXiv. /abs/2109.04644

2. Jamali, H., Karimi, A., & Haghighizadeh, M. (2018). A New Method of Cloud-Based Computa-

tion Model for Mobile Devices: Energy Consumption Optimization in Mobile-to-Mobile Com-

putation Offloading. Proceedings of the 6th International Conference on Communications and

Broadband Networking, 32–37. Presented at Singapore. doi:10.1145/3193092.3193103

3. Chen, H., Wang, F.Z., Helian, N., & Akanmu, G. (2013). User-priority guided Min-Min sched-

uling algorithm for load balancing in cloud computing. 2013 National Conference on Parallel

Computing Technologies (PARCOMPTECH), 1-8.

4. Sehgal, N. K., & Bhatt, P. C. P. (2018). Cloud Computing: Concepts and Practices, Springer.

doi:10.1007/978-3-319-77839-6

5. Sun, H., Chen, S.-P., Jin, C., & Guo, K. (2013). Research and Simulation of Task Scheduling

Algorithm in Cloud Computing. TELKOMNIKA Indonesian Journal of Electrical Engineering,

11. doi:10.11591/telkomnika.v11i11.3513

6. Akilandeswari, P., & Srimathi, H. (2016). Survey and analysis on Task scheduling in Cloud en-

vironment. Indian Journal of Science and Technology, 9(37), 1–6.

doi:10.17485/ijst/2016/v9i37/102058

7. Singh, A. B., Bhat, S., Raju, R., & D’Souza, R. (2017). A comparative study of various schedul-

ing algorithms in cloud computing. American Journal of Intelligent Systems; 7 (3): 68-72. doi:

10.5923/j.ajis.20170703.06

8. Lavanya, M., Shanthi, B., & Saravanan, S. (2020). Multi objective task scheduling algorithm

based on SLA and processing time suitable for cloud environment. Computer Communications,

151, 183-195.

9. Mansouri, N., & Javidi, M. M. (2020). Cost-based job scheduling strategy in cloud computing

environments, Distrib Parallel Databases 38, 365–400. doi:10.1007/s10619-019-07273-y

10. Zubair, A.A., Razak, S.A., Ngadi, M.A., Al-Dhaqm, A., Yafooz, W.M.S., Emara, A.-H.M., Saad,

A., & Al-Aqrabi, H. (2022). A Cloud Computing-Based Modified Symbiotic Organisms Search

Algorithm (AI) for Optimal Task Scheduling. Sensors, 22(4). doi:10.3390/s22041674

11. 12. Rajakumari, K., Kumar, M. V., Verma, G., Balu, S., Sharma, D. K., & Sengan, S. (2022).

Fuzzy Based Ant Colony Optimization Scheduling in Cloud Computing. Computer Systems Sci-

ence and Engineering, 40(2), 581–592.

12. Ghazipour, F., Mirabedini, S. J., & Harounabadi, A. (2016). Proposing a new Job Scheduling

Algorithm in Grid Environment Using a Combination of Ant Colony Optimization Algorithm

(ACO) and Suffrage, International Journal of Computer Applications Technology and Research,

Vol. 5, No. 1, pp. 20-25.

13. Sharma, S., & Tyagi, S. (2017). A Survey on Heuristic Approach for Task Scheduling in Cloud

Computing. International Journal of Advanced Research in Computer Science, Volume 8: PP

1089-1092.

14. Mapetu, J.P., Chen, Z., & Kong, L. (2019). Low-time complexity and low-cost binary particle

swarm optimization algorithm for task scheduling and load balancing in cloud computing. Ap-

plied Intelligence, 49, 3308 - 3330.

15. Saeedi, S., Khorsand, R., Ghandi Bidgoli, S., & Ramezanpour, M. (2020). “Improved many-

objective particle swarm optimization algorithm for scientific workflow scheduling in cloud

computing”. Computers & industrial engineering, Volume 147: PP:159–187.

16. Rajagopalan, A., Modale, D.R., & Senthilkumar, R. (2020). Optimal scheduling of tasks in cloud

computing using hybrid firefly-genetic algorithm. In Advances in decision sciences, image pro-

cessing, security and computer vision (pp. 678-687). Springer, Cham.

17. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017).

Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in

Engineering Software, 114, 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002

