Skip to main content

Enhancing the Anti-steganalysis Ability of Image Steganography via Multiple Adversarial Networks

  • Conference paper
  • First Online:
Science of Cyber Security (SciSec 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14299))

Included in the following conference series:

  • 659 Accesses

Abstract

Existing steganographic methods based on adversarial images can only design adversarial images for a single steganalyzer and cannot resist detection from the latest steganalyzers using convolutional neural networks such as SRNet and Zhu-Net. To address this issue, this paper proposes a novel method for enhancing the security of image steganography using multiple adversarial networks and channel attention modules. The proposed method employs generative adversarial networks based on the U-Net structure to generate high-quality adversarial images and uses the self-learning properties of the adversarial networks to iteratively optimize the parameters of multiple adversarial steganographic networks. This process generates high-quality adversarial images capable of misleading multiple steganalyzers. Additionally, the proposed scheme adaptsively adjusts the distribution of adversarial noise in the original image using multiple lightweight channel attention modules in the generator, thus enhancing the anti-steganalysis ability of adversarial images. Furthermore, the proposed method utilizes multiple discrimination losses and MSE loss, dynamically combined to improve the quality of adversarial images and facilitate the network’s rapid and stable convergence. Extensive experimental results demonstrate that the proposed algorithm can generate adversarial images with a PSNR of up to 42.8 dB, and the success rate of misleading the advanced steganalyzers is over 93%. The security and generalization of the algorithm we propose exceed those of the compared steganographic methods.

This work was partially supported by National Natural Science Foundation of China (62272255); National key research and development program of China (2021YFC3340602); Shandong Provincial Natural Science Foundation Innovation and Development Joint Fund (ZR202208310038); Ability Improvement Project of Science and Technology SMES in Shandong Province (2022TSGC2485); Project of Jinan Research Leader Studio (2020GXRC056); Project of Jinan Introducing Innovation Team (202228016); Project of Jinan City-School Integration Development (JNSX2021030); Youth Innovation Team of Colleges and Universities in Shandong Province (2022KJ124);The “Chunhui Plan” Cooperative Scientific Research Project of Ministry of Education (HZKY20220482);Shandong Provincial Natural Science Foundation (ZR2020MF054).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mielikainen, J.: LSB matching revisited. IEEE Signal Process. Lett. 13(5), 285–287 (2006)

    Article  Google Scholar 

  2. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) Information Hiding, pp. 161–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_13

    Chapter  Google Scholar 

  3. Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 234–239. IEEE (2012)

    Google Scholar 

  4. Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)

    Article  Google Scholar 

  5. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014). https://doi.org/10.1186/1687-417X-2014-1

    Article  Google Scholar 

  6. Guo, L., Ni, J., Shi, Y.Q.: An efficient JPEG steganographic scheme using uniform embedding. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 169–174. IEEE (2012)

    Google Scholar 

  7. Guo, L., Ni, J., Shi, Y.Q.: Uniform embedding for efficient JPEG steganography. IEEE Trans. Inf. Forensics Secur. 9(5), 814–825 (2014)

    Article  Google Scholar 

  8. Zhang, X., Peng, F., Long, M.: Robust coverless image steganography based on DCT and LDA topic classification. IEEE Trans. Multimed. 20(12), 3223–3238 (2018)

    Article  Google Scholar 

  9. Luo, Y., Qin, J., Xiang, X., Tan, Y.: Coverless image steganography based on multi-object recognition. IEEE Trans. Circuits Syst. Video Technol. 31(7), 2779–2791 (2021)

    Article  Google Scholar 

  10. Wu, K., Wang, C.: Steganography using reversible texture synthesis. IEEE Trans. Image Process. 24(1), 130–139 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, J., Mao, X., Jin, X., et al.: Hidden message in a deformation-based texture. Vis. Comput. 31, 1653–1669 (2015)

    Article  Google Scholar 

  12. Chen, X., Zhang, Z., Qiu, A., Xia, Z., Xiong, N.N.: Novel coverless steganography method based on image selection and StarGAN. IEEE Trans. Netw. Sci. Eng. 9(1), 219–230 (2022)

    Article  Google Scholar 

  13. Peng, F., Chen, G., Long, M.: A robust coverless steganography based on generative adversarial networks and gradient descent approximation. IEEE Trans. Circuits Syst. Video Technol. 32(9), 5817–5829 (2022)

    Article  Google Scholar 

  14. Xu, G., Wu, H.-Z., Shi, Y.-Q.: Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016)

    Article  Google Scholar 

  15. Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017)

    Article  Google Scholar 

  16. Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181–1193 (2019)

    Article  Google Scholar 

  17. Zhang, R., Zhu, F., Liu, J., Liu, G.: Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-Based steganalysis. IEEE Trans. Inf. Forensics Secur. 15, 1138–1150 (2020)

    Article  Google Scholar 

  18. Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  19. Tang, W., Tan, S., Li, B., Huang, J.: Automatic steganographic distortion learning using a generative adversarial network. IEEE Signal Process. Lett. 24(10), 1547–1551 (2017)

    Article  Google Scholar 

  20. Yang, J.H., Liu, K., Kang, X.Q., et al.: Spatial image steganography based on generative adversarial network. arXiv: Multimedia, https://arxiv.org/abs/1804.07939v1 (2019)

  21. Zhang, Y.W., Zhang, W.M., Chen, K.J., Liu, J.Y., Liu, Y.J., Yu, N.H.: Adversarial examples against deep neural network based steganalysis. In: Proceedings of the 6th ACM Workshop Information Hiding Multimedia Security, pp. 67–72. ACM (2018)

    Google Scholar 

  22. Zhou, L., Feng, G., Shen, L., Zhang, X.: On security enhancement of steganography via generative adversarial image. IEEE Signal Process. Lett. 27, 166–170 (2020)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Bas, P., Filler, T., Pevný, T.: Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

  25. Tan, J., Liao, X., Liu, J., Cao, Y., Jiang, H.: Channel attention image steganography with generative adversarial networks. IEEE Trans. Netw. Sci. Eng. 9(2), 888–903 (2022)

    Article  Google Scholar 

  26. Qin, X., Li, B., Tan, S., Tang, W., Huang, J.: Gradually enhanced adversarial perturbations on color pixel vectors for image steganography. IEEE Trans. Circuits Syst. Video Technol. 32(8), 5110–5123 (2022)

    Article  Google Scholar 

  27. Liu, M., Luo, W., Zheng, P., Huang, J.: A new adversarial embedding method for enhancing image steganography. IEEE Trans. Inf. Forensics Secur. 16, 4621–4634 (2021)

    Article  Google Scholar 

  28. Qin, X., Tan, S., Tang, W., Li, B., Huang, J.: Image steganography based on iterative adversarial perturbations onto a synchronized-directions sub-image. In: 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2705–2709. IEEE (2021)

    Google Scholar 

  29. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, B., Li, K., Xu, J., Wang, C., Li, J., Zhang, L. (2023). Enhancing the Anti-steganalysis Ability of Image Steganography via Multiple Adversarial Networks. In: Yung, M., Chen, C., Meng, W. (eds) Science of Cyber Security . SciSec 2023. Lecture Notes in Computer Science, vol 14299. Springer, Cham. https://doi.org/10.1007/978-3-031-45933-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45933-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45932-0

  • Online ISBN: 978-3-031-45933-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics