Abstract
Existing steganographic methods based on adversarial images can only design adversarial images for a single steganalyzer and cannot resist detection from the latest steganalyzers using convolutional neural networks such as SRNet and Zhu-Net. To address this issue, this paper proposes a novel method for enhancing the security of image steganography using multiple adversarial networks and channel attention modules. The proposed method employs generative adversarial networks based on the U-Net structure to generate high-quality adversarial images and uses the self-learning properties of the adversarial networks to iteratively optimize the parameters of multiple adversarial steganographic networks. This process generates high-quality adversarial images capable of misleading multiple steganalyzers. Additionally, the proposed scheme adaptsively adjusts the distribution of adversarial noise in the original image using multiple lightweight channel attention modules in the generator, thus enhancing the anti-steganalysis ability of adversarial images. Furthermore, the proposed method utilizes multiple discrimination losses and MSE loss, dynamically combined to improve the quality of adversarial images and facilitate the network’s rapid and stable convergence. Extensive experimental results demonstrate that the proposed algorithm can generate adversarial images with a PSNR of up to 42.8 dB, and the success rate of misleading the advanced steganalyzers is over 93%. The security and generalization of the algorithm we propose exceed those of the compared steganographic methods.
This work was partially supported by National Natural Science Foundation of China (62272255); National key research and development program of China (2021YFC3340602); Shandong Provincial Natural Science Foundation Innovation and Development Joint Fund (ZR202208310038); Ability Improvement Project of Science and Technology SMES in Shandong Province (2022TSGC2485); Project of Jinan Research Leader Studio (2020GXRC056); Project of Jinan Introducing Innovation Team (202228016); Project of Jinan City-School Integration Development (JNSX2021030); Youth Innovation Team of Colleges and Universities in Shandong Province (2022KJ124);The “Chunhui Plan” Cooperative Scientific Research Project of Ministry of Education (HZKY20220482);Shandong Provincial Natural Science Foundation (ZR2020MF054).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mielikainen, J.: LSB matching revisited. IEEE Signal Process. Lett. 13(5), 285–287 (2006)
Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) Information Hiding, pp. 161–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_13
Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 234–239. IEEE (2012)
Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)
Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014). https://doi.org/10.1186/1687-417X-2014-1
Guo, L., Ni, J., Shi, Y.Q.: An efficient JPEG steganographic scheme using uniform embedding. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 169–174. IEEE (2012)
Guo, L., Ni, J., Shi, Y.Q.: Uniform embedding for efficient JPEG steganography. IEEE Trans. Inf. Forensics Secur. 9(5), 814–825 (2014)
Zhang, X., Peng, F., Long, M.: Robust coverless image steganography based on DCT and LDA topic classification. IEEE Trans. Multimed. 20(12), 3223–3238 (2018)
Luo, Y., Qin, J., Xiang, X., Tan, Y.: Coverless image steganography based on multi-object recognition. IEEE Trans. Circuits Syst. Video Technol. 31(7), 2779–2791 (2021)
Wu, K., Wang, C.: Steganography using reversible texture synthesis. IEEE Trans. Image Process. 24(1), 130–139 (2015)
Xu, J., Mao, X., Jin, X., et al.: Hidden message in a deformation-based texture. Vis. Comput. 31, 1653–1669 (2015)
Chen, X., Zhang, Z., Qiu, A., Xia, Z., Xiong, N.N.: Novel coverless steganography method based on image selection and StarGAN. IEEE Trans. Netw. Sci. Eng. 9(1), 219–230 (2022)
Peng, F., Chen, G., Long, M.: A robust coverless steganography based on generative adversarial networks and gradient descent approximation. IEEE Trans. Circuits Syst. Video Technol. 32(9), 5817–5829 (2022)
Xu, G., Wu, H.-Z., Shi, Y.-Q.: Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016)
Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017)
Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181–1193 (2019)
Zhang, R., Zhu, F., Liu, J., Liu, G.: Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-Based steganalysis. IEEE Trans. Inf. Forensics Secur. 15, 1138–1150 (2020)
Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Tang, W., Tan, S., Li, B., Huang, J.: Automatic steganographic distortion learning using a generative adversarial network. IEEE Signal Process. Lett. 24(10), 1547–1551 (2017)
Yang, J.H., Liu, K., Kang, X.Q., et al.: Spatial image steganography based on generative adversarial network. arXiv: Multimedia, https://arxiv.org/abs/1804.07939v1 (2019)
Zhang, Y.W., Zhang, W.M., Chen, K.J., Liu, J.Y., Liu, Y.J., Yu, N.H.: Adversarial examples against deep neural network based steganalysis. In: Proceedings of the 6th ACM Workshop Information Hiding Multimedia Security, pp. 67–72. ACM (2018)
Zhou, L., Feng, G., Shen, L., Zhang, X.: On security enhancement of steganography via generative adversarial image. IEEE Signal Process. Lett. 27, 166–170 (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Bas, P., Filler, T., Pevný, T.: Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5
Tan, J., Liao, X., Liu, J., Cao, Y., Jiang, H.: Channel attention image steganography with generative adversarial networks. IEEE Trans. Netw. Sci. Eng. 9(2), 888–903 (2022)
Qin, X., Li, B., Tan, S., Tang, W., Huang, J.: Gradually enhanced adversarial perturbations on color pixel vectors for image steganography. IEEE Trans. Circuits Syst. Video Technol. 32(8), 5110–5123 (2022)
Liu, M., Luo, W., Zheng, P., Huang, J.: A new adversarial embedding method for enhancing image steganography. IEEE Trans. Inf. Forensics Secur. 16, 4621–4634 (2021)
Qin, X., Tan, S., Tang, W., Li, B., Huang, J.: Image steganography based on iterative adversarial perturbations onto a synchronized-directions sub-image. In: 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2705–2709. IEEE (2021)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141. IEEE (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ma, B., Li, K., Xu, J., Wang, C., Li, J., Zhang, L. (2023). Enhancing the Anti-steganalysis Ability of Image Steganography via Multiple Adversarial Networks. In: Yung, M., Chen, C., Meng, W. (eds) Science of Cyber Security . SciSec 2023. Lecture Notes in Computer Science, vol 14299. Springer, Cham. https://doi.org/10.1007/978-3-031-45933-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-45933-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45932-0
Online ISBN: 978-3-031-45933-7
eBook Packages: Computer ScienceComputer Science (R0)