Skip to main content

Two-Stage Anomaly Detection in LEO Satellite Network

  • Conference paper
  • First Online:
Science of Cyber Security (SciSec 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14299))

Included in the following conference series:

  • 279 Accesses

Abstract

We introduce a novel two-stage method for detecting anomaly signal in Low Earth Orbit (LEO) satellite network in response to increasing clutter signals and interference. First, a convolutional neural network (CNN) classifier is trained on real sensor signals and synthesized wireless modulated signals. Then, an anomaly detector is used to detect the classified signal. To address the limited computing resources on the satellite, we utilize transfer learning to reduce the scale of the classifier and anomaly detector. Our proposed method consists of a multi-class CNN model that reliably detects the modulation methods used in a specific satellite environment by I/Q signals and a recurrent neural network model that identifies anomalies when events significantly deviate from expected or predicted values. Experimental results show the effectiveness of our proposed method.

This work was funded by the Key Research and Development Program of Guangzhou (No. 202103050003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, J., Hu, X., Xiong, P., Zhou, W., et al.: The dynamic privacy-preserving mechanisms for online dynamic social networks. IEEE Trans. Knowl. Data Eng. 34, 2962–2974 (2020)

    Google Scholar 

  2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  3. Feng, Q., Zhang, Y., Li, C., Dou, Z., Wang, J.: Anomaly detection of spectrum in wireless communication via deep auto-encoders. J. Supercomput. 73(7), 3161–3178 (2017). https://doi.org/10.1007/s11227-017-2017-7

    Article  Google Scholar 

  4. J, K. (n.d.). Shanghai wants law on radio spectrum. https://www.shine.cn/news/metro/1803061282/. Accessed Mar 2018

  5. Dong, J.: Hybrid electromagnetic signal feature extraction. Wirel. Commun. Mob. Comput. 2022 (2022)

    Google Scholar 

  6. O’Shea, T.J., Corgan, J., Clancy, T.C.: Unsupervised representation learning of structured radio communication signals. In: 2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE), pp. 1–5. IEEE (2016)

    Google Scholar 

  7. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv Preprint arXiv:1412.3555 (2014)

  8. Graves, A.: Long short-term memory. In: Graves, A. (ed.) Supervised Sequence Labelling with Recurrent Neural Networks. SCI, vol. 385, pp. 37–45. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2_4

    Chapter  MATH  Google Scholar 

  9. Shi, Q., Karasawa, Y.: Automatic modulation identification based on the probability density function of signal phase. IEEE Trans. Commun. 60(4), 1033–1044 (2012)

    Article  Google Scholar 

  10. Xu, J.L., Su, W., Zhou, M.: Likelihood-ratio approaches to automatic modulation classification. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 41(4), 455–469 (2010)

    Article  Google Scholar 

  11. Zhu, Z., Nandi, A.K.: Blind digital modulation classification using minimum distance centroid estimator and non-parametric likelihood function. IEEE Trans. Wirel. Commun. 13(8), 4483–4494 (2014)

    Article  Google Scholar 

  12. Liedtke, F.: Computer simulation of an automatic classification procedure for digitally modulated communication signals with unknown parameters. Signal Process. 6(4), 311–323 (1984)

    Article  Google Scholar 

  13. Mobasseri, B.G.: Digital modulation classification using constellation shape. Signal Process. 80(2), 251–277 (2000)

    Article  MATH  Google Scholar 

  14. Ho, K., Prokopiw, W., Chan, Y.: Modulation identification of digital signals by the wavelet transform. IEE Proc.-Radar Sonar Navig. 147(4), 169–176 (2000)

    Article  Google Scholar 

  15. Wang, L., Guo, S., Jia, C.: Recognition of digital modulation signals based on wavelet amplitude difference. In: 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 627–630. IEEE (2016)

    Google Scholar 

  16. Lin, Y., Tu, Y., Dou, Z., Wu, Z.: The application of deep learning in communication signal modulation recognition. In: 2017 IEEE/CIC International Conference on Communications in China (ICCC), pp. 1–5. IEEE (2017)

    Google Scholar 

  17. Jiang, K., Zhang, J., Wu, H., Wang, A., Iwahori, Y.: A novel digital modulation recognition algorithm based on deep convolutional neural network. Appl. Sci. 10(3), 1166 (2020)

    Article  Google Scholar 

  18. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  19. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15–27. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_2

    Chapter  Google Scholar 

  20. Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., Chang, L.: A novel anomaly detection scheme based on principal component classifier, Technical report, Miami University, Coral Gables Fl Department of Electrical and Computer Engineering (2003)

    Google Scholar 

  21. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  22. Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 157–166 (2005)

    Google Scholar 

  23. Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in arbitrarily oriented subspaces. In: 2012 IEEE 12th International Conference on Data Mining, pp. 379–388. IEEE (2012)

    Google Scholar 

  24. Zhang, C., et al.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1409–1416 (2019)

    Google Scholar 

  25. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4027–4035 (2021)

    Google Scholar 

  26. Jiang, N., Jie, W., Li, J., Liu, X., Jin, D.: GATrust: a multi-aspect graph attention network model for trust assessment in OSNs. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  27. Zong, B., et al.: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

  28. Dai, W., Xue, G.-R., Yang, Q., Yu, Y.: Transferring Naive Bayes classifiers for text classification. In: AAAI (2007)

    Google Scholar 

  29. Wang, Z., Song, Y., Zhang, C.: Transferred dimensionality reduction. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 550–565. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_36

    Chapter  Google Scholar 

  30. Dai, W., Yang, Q., Xue, G.-R., Yu, Y.: Self-taught clustering. In: ICML 2008 (2008)

    Google Scholar 

  31. Xu, Y., et al.: A unified framework for metric transfer learning. IEEE Trans. Knowl. Data Eng. 29, 1158–1171 (2017)

    Article  Google Scholar 

  32. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv abs/1412.3474 (2014)

    Google Scholar 

  33. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)

    Google Scholar 

  34. Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M.: Domain-adversarial neural networks. arXiv abs/1412.4446 (2014)

    Google Scholar 

  35. Luo, Z., Zou, Y., Hoffman, J., Fei-Fei, L.: Label efficient learning of transferable representations across domains and tasks. arXiv abs/1712.00123 (2017)

    Google Scholar 

  36. Liu, D., Alnegheimish, S., Zytek, A., Veeramachaneni, K.: MTV: visual analytics for detecting, investigating, and annotating anomalies in multivariate time series. arXiv preprint arXiv:2112.05734 (2021)

  37. Tianqing, Z., Zhou, W., Ye, D., Cheng, Z., Li, J.: Resource allocation in IoT edge computing via concurrent federated reinforcement learning. IEEE Internet Things J. 9(2), 1414–1426 (2021)

    Article  Google Scholar 

  38. Dau, H.A., et al.: The UCR time series archive. IEEE/CAA J. Automatica Sinica 6(6), 1293–1305 (2019)

    Article  Google Scholar 

  39. Zhou, X., Xiao, Y., Hu, M., Liu, L.: Wireless signal recognition based on deep learning for LEO constellation satellite. In: Yu, Q. (ed.) SINC 2019. CCIS, vol. 1169, pp. 275–285. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3442-3_23

    Chapter  Google Scholar 

  40. Zhang, G.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)

    Article  MATH  Google Scholar 

  41. Taylor, S., Letham, B.: Forecasting at scale. Am. Stat. 72, 37–45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances In Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  43. Lai, G., Chang, W.-C., Yang, Y., Liu, H.: Modeling long-and short-term temporal patterns with deep neural networks. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 95–104 (2018)

    Google Scholar 

  44. Li, H., Pan, S., Wang, S., Kot, A.: Domain generalization with adversarial feature learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2018)

    Google Scholar 

  45. Yu, C., Wang, J., Chen, Y., Huang, M.: Transfer learning with dynamic adversarial adaptation network. In: 2019 IEEE International Conference On Data Mining (ICDM), pp. 778–786 (2019)

    Google Scholar 

  46. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yipeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y. et al. (2023). Two-Stage Anomaly Detection in LEO Satellite Network. In: Yung, M., Chen, C., Meng, W. (eds) Science of Cyber Security . SciSec 2023. Lecture Notes in Computer Science, vol 14299. Springer, Cham. https://doi.org/10.1007/978-3-031-45933-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45933-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45932-0

  • Online ISBN: 978-3-031-45933-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics