Abstract
This paper introduces a novel encoding scheme for hashing values from the finite field \(\mathbb {F}_p\) to points on Jacobi quartic curves. These curves possess efficient group law and are immune to timing attacks. The proposed encoding scheme achieves almost injective and invertible mappings of the input values into Jacobi quartic curves. When \(p \equiv 3 \mod 4\), our encoding saves \( 2 \textbf{I} + \textbf{D} - 8 \textbf{M} - 4 \textbf{S}\) compared to existing methods. This improvement amounts to approximately \(50\%\) on average when compared to existing methods. The encoding scheme can be used in a variety of cryptographic applications that rely on elliptic curves, such as identity-based encryption schemes and private set intersection protocols.
Supported by the National Natural Science Foundation of China (No. 62272453, U1936209, 61872442, and 61502487).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alasha, T.: Constant-time encoding points on elliptic curve of different forms over finite fields (2012)
Bernstein, D., Hamburg, M., Krasnova, A., Lange, T.: Elligator: Elliptic-curve points indistinguishable from uniform random strings, pp. 967ā980 (2013). https://doi.org/10.1145/2508859.2516734
Bernstein, D., Lange, T.: Explicit-formulas database (2020). http://hyperelliptic.org/EFD/
Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis. In: Fossorier, M., HĆøholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 34ā42. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44828-4_5
Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213ā229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514ā532. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_30
Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156ā171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_12
Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 237ā254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_13
Chen, L., Moody, D., Regenscheid, A., Randall, K.: Draft nist special publication 800-186 recommendations for discrete logarithm-based cryptography: elliptic curve domain parameters. Technical report, National Institute of Standards and Technology (2019)
Chudnovsky, D., Chudnovsky, G.: Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Adv. Appl. Math. 7(4), 385ā434 (1986). https://doi.org/10.1016/0196-8858(86)90023-0
ChĆ”vez-Saab, J., RodrĆguez-Henrquez, F., Tibouchi, M.: SwiftEC: Shallue-van de Woestijne indifferentiable function to elliptic curves (2022). https://eprint.iacr.org/2022/759
Diarra, N., Sow, D., Khlil, A.Y.O.C.: On indifferentiable deterministic hashing into elliptic curves. Eur. J. Pure Appl. Math. 10, 363ā391 (2017)
Doss, S., Kaondera-Shava, R.: An optimal Tate pairing computation using Jacobi quartic elliptic curves. J. Comb. Optim. 35(4), 1086ā1103 (2018). https://doi.org/10.1007/s10878-018-0257-y
Duquesne, S., Fouotsa, E.: Tate pairing computation on Jacobiās elliptic curves. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 254ā269. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4_17
Farashahi, R., Fouque, P.A., Shparlinski, I., Tibouchi, M., Voloch, J.: Indifferentiable deterministic hashing to elliptic and hyperelliptic curves. IACR Cryptol. ePrint Arch. 2010, 539 (2010). https://doi.org/10.1090/S0025-5718-2012-02606-8
Farashahi, R.R., Shparlinski, I.E., Voloch, J.F.: On hashing into elliptic curves. J. Math. Cryptol. 3(4), 353ā360 (2009)
Farashahi, R.R.: Hashing into hessian curves. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 278ā289. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21969-6_17
Faz-HernƔndez, A., Scott, S., Sullivan, N., Wahby, R.S., Wood, C.A.: Hashing to elliptic curves. Internet-Draft draft-irtf-cfrg-hash-to-curve-13, Internet Engineering Task Force (2021). https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-13
Fouque, P.-A., Tibouchi, M.: Estimating the size of the image of deterministic hash functions to elliptic curves. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 81ā91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14712-8_5
Fouque, P.-A., Tibouchi, M.: Indifferentiable hashing to BarretoāNaehrig curves. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 1ā17. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8_1
He, X., Yu, W., Wang, K.: Hashing into generalized huff curves. In: Lin, D., Wang, X.F., Yung, M. (eds.) Inscrypt 2015. LNCS, vol. 9589, pp. 22ā44. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38898-4_2
Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Jacobi quartic curves revisited. In: Boyd, C., GonzĆ”lez Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 452ā468. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02620-1_31
Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203ā209 (1987)
Koshelev, D.: Indifferentiable hashing to ordinary elliptic \({{F}}_{q}\)-curves of \(j=0\) with the cost of one exponentiation in \({{F}}_{q}\). Designs Codes Cryptogr. 90 (2022). https://doi.org/10.1007/s10623-022-01012-8
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417ā426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31
Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 510ā524. Springer, Heidelberg (2006). https://doi.org/10.1007/11792086_36
SkaÅba, M.: Points on elliptic curves over finite fields. Acta Arith. 117(3), 293ā301 (2005)
Tibouchi, M.: Elligator squared: uniform points on elliptic curves of prime order as uniform random strings. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 139ā156. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_10
Ulas, M.: Rational points on certain hyperelliptic curves over finite fields. arXiv Number Theory (2007)
Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the BLS12-381 elliptic curve. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 154ā179 (2019)
Yu, W., Wang, K., Li, B., He, X., Tian, S.: Hashing into Jacobi quartic curves. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 355ā375. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5_20
Yu, W., Wang, K., Li, B., He, X., Tian, S.: Deterministic encoding into twisted Edwards curves. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 285ā297. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0_18
Zhang, F., Li, L., Wu, H.: Faster pairing computation on Jacobi quartic curves with high-degree twists. In: Yung, M., Zhu, L., Yang, Y. (eds.) INTRUST 2014. LNCS, vol. 9473, pp. 310ā327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27998-5_20
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, X., Yu, W., Wang, K., Li, L. (2023). Almost Injective and Invertible Encodings for Jacobi Quartic Curves. In: Yung, M., Chen, C., Meng, W. (eds) Science of Cyber Security . SciSec 2023. Lecture Notes in Computer Science, vol 14299. Springer, Cham. https://doi.org/10.1007/978-3-031-45933-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-45933-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45932-0
Online ISBN: 978-3-031-45933-7
eBook Packages: Computer ScienceComputer Science (R0)