Skip to main content

What Can Large Language Models Do for Theorem Proving and Formal Methods?

  • Conference paper
  • First Online:
Bridging the Gap Between AI and Reality (AISoLA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14380))

Included in the following conference series:

Abstract

With the introduction of large language models, AI for natural language have taken a leap. These systems are now also being used for tasks that has previously been dominated by symbolic methods, such as program synthesis and even to support formalising mathematics and assist theorem provers. We survey some recent applications in theorem proving, focusing on how they combine neural networks with symbolic systems, and report on a case-study of using GPT-4 for the task of automated conjecturing a.k.a. theory exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colton, S.: The HR program for theorem generation. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 285–289. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45620-1_24

    Chapter  Google Scholar 

  2. Cunningham, G., Bunescu, R.C., Juedes, D.: Towards autoformalization of mathematics and code correctness: experiments with elementary proofs (2023)

    Google Scholar 

  3. Davis, E., Aaronson, S.: Testing GPT-4 with Wolfram Alpha and Code Interpreter plug-ins on math and science problems (2023)

    Google Scholar 

  4. Fajtlowicz, S.: On conjectures of Graffiti. Ann. Discrete Math. 38, 113–118 (1988)

    Article  MathSciNet  Google Scholar 

  5. First, E., Rabe, M.N., Ringer, T., Brun, Y.: Baldur: Whole-proof generation and repair with large language models (2023). https://arxiv.org/abs/2303.04910

  6. Jiang, A.Q., et al.: Thor: Wielding hammers to integrate language models and automated theorem provers. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K., editors, Advances in Neural Information Processing Systems (2022). https://openreview.net/forum?id=fUeOyt-2EOp

  7. Johansson, M., Smallbone, N.: Exploring mathematical conjecturing with large language models. In: Proceedings of NeSy 2023, 17th International Workshop on Neural-Symbolic Learning and Reasoning (2023)

    Google Scholar 

  8. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. J. Autom. Reason. 47(3), 251–289, Oct (2011). ISSN 1573–0670. https://doi.org/10.1007/s10817-010-9193-y

  9. Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 108–122. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3_9

    Chapter  Google Scholar 

  10. Kaliszyk, C., Urban, J., Vyskocil, J.: System description: statistical parsing of informalized Mizar formulas. In: 2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 169–172 (2017). https://doi.org/10.1109/SYNASC.2017.00036

  11. Lenat, D.B.: AM, an artificial intelligence approach to discovery in mathematics as heuristic search (1976)

    Google Scholar 

  12. Lewkowycz, A., et al.: Solving quantitative reasoning problems with language models. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K., editors, Advances in Neural Information Processing Systems (2022). https://openreview.net/forum?id=IFXTZERXdM7

  13. McCasland, R.L., Bundy, A., Smith, P.F.: MATHsAiD: automated mathematical theory exploration. Appl. Intell. 47(3), 585–606 (2017). https://doi.org/10.1007/s10489-017-0954-8

    Article  Google Scholar 

  14. OpenAI. GPT-4 technical report. Technical report (2023). https://cdn.openai.com/papers/gpt-4.pdf

  15. Rabe, M.N., Lee, D., Bansal, K., Szegedy, C.: Mathematical reasoning via self-supervised skip-tree training. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=YmqAnY0CMEy

  16. Smallbone, N., Johansson, M., Claessen, K., Algehed, M.: Quick specifications for the busy programmer. J. Functional Program., 27 (2017). https://doi.org/10.1017/S0956796817000090

  17. Szegedy, C.: A promising path towards autoformalization and general artificial intelligence. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_1

    Chapter  Google Scholar 

  18. Szegedy, C.: A promising path towards autoformalization and general artificial intelligence. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_1

    Chapter  Google Scholar 

  19. Wu, Y., et al.: Autoformalization with large language models. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K., editors, Advances in Neural Information Processing Systems (2022). https://openreview.net/forum?id=IUikebJ1Bf0

  20. Yang, K., et al.: LeanDojo: theorem proving with retrieval-augmented language models. arXiv preprint arXiv:2306.15626 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moa Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johansson, M. (2024). What Can Large Language Models Do for Theorem Proving and Formal Methods?. In: Steffen, B. (eds) Bridging the Gap Between AI and Reality. AISoLA 2023. Lecture Notes in Computer Science, vol 14380. Springer, Cham. https://doi.org/10.1007/978-3-031-46002-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46002-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46001-2

  • Online ISBN: 978-3-031-46002-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics