Skip to main content

An Intelligent Image Processing System for Enhancing Blood Vessel Segmentation on Low-Power SoC

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2023)

Abstract

Machine learning offers the potential to enhance real-time image analysis in surgical operations. This paper presents results from the implementation of machine learning algorithms targeted for an intelligent image processing system comprising a custom CMOS image sensor and field programmable gate array. A novel method is presented for efficient image segmentation and minimises energy usage and requires low memory resources, which makes it suitable for implementation. Using two eigenvalues of the enhanced Hessian image, simplified traditional machine learning (ML) and deep learning (DL) methods are employed to learn the prediction of blood vessels. Quantitative comparisons are provided between different ML models based on accuracy, resource utilisation, throughput, and power usage. It is shown how a gradient boosting decision tree (GBDT) with 1000 times fewer parameters can achieve comparable state-of-the-art performance whilst only using a much smaller proportion of the resources and producing a 200 MHz design that operates at 1,779 frames per second at 3.62 W, making it highly suitable for the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tyndall National Institute (TNI), https://www.tyndall.ie/.

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  2. Alsharari, M., et al.: Multi-spectral in-vivo FPGA-based surgical imaging. In: Gan, L., Wang, Y., Xue, W., Chau, T. (eds.) ARC 2022. LNCS, vol. 13569, pp. 103–117. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19983-7_8

    Chapter  Google Scholar 

  3. Cervantes-Sanchez, F., Cruz-Aceves, I., Hernandez-Aguirre, A., Hernandez-Gonzalez, M.A., Solorio-Meza, S.E.: Automatic segmentation of coronary arteries in x-ray angiograms using multiscale analysis and artificial neural networks. Appl. Sci. 9(24), 5507 (2019)

    Article  Google Scholar 

  4. Coelho, C.N., et al.: Automatic deep heterogeneous quantization of deep neural networks for ultra low-area, low-latency inference on the edge at particle colliders. arXiv preprint arXiv:2006.10159 6 (2020)

  5. Conifer: Fast inference of Boosted Decision Trees in FPGAs (2021). http://github.com/thesps/conifer

  6. Dorogush, A.V., Ershov, V., Gulin, A.: CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363 (2018)

  7. Duarte, J., et al.: Fast inference of deep neural networks in FPGAs for particle physics. JINST 13(07), P07027 (2018)

    Article  Google Scholar 

  8. Elbalaoui, A., Fakir, M., Taifi, K., Merbouha, A.: Automatic detection of blood vessel in retinal images. In: 13th IEEE International Conference on Computer Graphics, Imaging and Visualization, pp. 324–332 (2016)

    Google Scholar 

  9. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 130–137 (1998)

    Google Scholar 

  10. Fraz, M.M., et al.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)

    Article  Google Scholar 

  11. Jin, Q., Chen, Q., Meng, Z., Wang, B., Su, R.: Construction of retinal vessel segmentation models based on convolutional neural network. Neural Process. Lett. 52(2), 1005–1022 (2020)

    Article  Google Scholar 

  12. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

  13. Liu, S., et al.: Optimizing CNN-based segmentation with deeply customized convolutional and deconvolutional architectures on FPGA. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 11(3), 1–22 (2018)

    Article  Google Scholar 

  14. Liu, W., et al.: Full-resolution network and dual-threshold iteration for retinal vessel and coronary angiograph segmentation. IEEE J. Biomed. Health Inform. 26(9), 4623–4634 (2022)

    Article  Google Scholar 

  15. Memari, N., et al.: Supervised retinal vessel segmentation from color fundus images based on matched filtering and adaboost classifier. PloS One 12(12), e0188939 (2017)

    Google Scholar 

  16. Miyama, M.: FPGA implementation of 3-bit quantized CNN for semantic segmentation. In: Journal of Physics: Conference Series, vol. 1729, p. 012004 (2021)

    Google Scholar 

  17. Moccia, S., De Momi, E., El Hadji, S., Mattos, L.S.: Blood vessel segmentation algorithms-review of methods, datasets and evaluation metrics. Comput. Methods Programs Biomed. 158, 71–91 (2018)

    Article  Google Scholar 

  18. Nekovei, R., Sun, Y.: Back-propagation network and its configuration for blood vessel detection in angiograms. IEEE Trans. Neural Netw. 6(1), 64–72 (1995)

    Article  Google Scholar 

  19. Oktay, O., et al.: Attention U-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  20. O’Malley, T., et al.: Kerastuner (2019). http://github.com/keras-team/keras-tuner

  21. Papatheofanous, E., et al.: SoC FPGA acceleration for semantic segmentation of clouds in satellite images. In: 2022 IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-SoC), pp. 1–4 (2022)

    Google Scholar 

  22. Pizer, S., Johnston, R., Ericksen, J., Yankaskas, B., Muller, K.: Contrast-limited adaptive histogram equalization: speed and effectiveness. In: Proceedings of the First Conference on Visualization in Biomedical Computing, pp. 337–345 (1990)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  25. Sule, O.O.: A survey of deep learning for retinal blood vessel segmentation methods: taxonomy, trends, challenges and future directions. IEEE Access 10, 38202–38236 (2022)

    Article  Google Scholar 

  26. Summers, S., et al.: Fast inference of boosted decision trees in FPGAs for particle physics. J. Instrum. 15, P05026 (2020)

    Article  Google Scholar 

  27. Yang, J., et al.: Improved hessian multiscale enhancement filter. Bio-Med. Mater. Eng. 24(6), 3267–3275 (2014)

    Article  Google Scholar 

  28. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by Jouf University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majed Alsharari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alsharari, M., Mai, S.T., Garnier, R., Reaño, C., Woods, R. (2023). An Intelligent Image Processing System for Enhancing Blood Vessel Segmentation on Low-Power SoC. In: Silvano, C., Pilato, C., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2023. Lecture Notes in Computer Science, vol 14385. Springer, Cham. https://doi.org/10.1007/978-3-031-46077-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46077-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46076-0

  • Online ISBN: 978-3-031-46077-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics