Abstract
In recent research, few-shot generation models have attracted increasing interest in computer vision. They aim at generating more data of a given domain, with only a few available training examples. Although many methods have been introduced to handle few-shot generation tasks, most of them are usually unstable during the training process and can only generate cookie-cutter images. To alleviate these issues, we propose a novel few-shot generation method based on the classifier-free conditional diffusion model. Specifically, we train an autoencoder on seen categories and then use patch discriminator adversarial training to achieve better reconstruction quality. Subsequently, for the k-shot task, we extract k image features and calculate the conditional information to guide the training generation of the diffusion model. To avoid the singularness of conditional information caused by the prototype model, we use the latest Feature Fusion module (LFM) to learn various features. We conduct extensive experiments on three well-known datasets and the experimental results clearly demonstrate the effectiveness of our proposed method for few-shot image generation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Ding, G., et al.: Attribute group editing for reliable few-shot image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, pp. 11194–11203 (2022)
Clouâtre, L., Demers, M.: FIGR: Few-shot Image Generation with Reptile. arXiv preprint arXiv:1901.02199 (2019)
Gu, Z., Li, W., Huo, J., Wang, L., Gao, Y.: LoFGAN: fusing local representations for few-shot image generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, CVPR 2021, pp. 8463–8471 (2021)
Hong, Y., Niu, L., Zhang, J., Zhao, W., Fu, C., Zhang, L.: F2GAN: fusing-and-filling GAN for few-shot image generation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2535–2543. ACM Multimedia 2020 (2020)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)
Bartunov, S., Vetrov, D.: Few-shot generative modelling with generative matching networks. In: International Conference on Artificial Intelligence and Statistics, pp. 670–678. PMLR (2018)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)
Hong, Y., Niu, L., Zhang, J., Zhang, L.: MatchingGAN: matching-based few-shot image generation. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), ICME 2020, pp. 1–6. IEEE (2020)
Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: CVPR 2021 (2021)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, NeurIPS2020, vol. 33, pp. 6840–6851. Curran Associates Inc (2020)
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)
Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-resolution via iterative refinement IEEE Trans. Pattern Anal. Mach. Intell. (2022)
Saharia, C., et al.: Palette: image-to-image diffusion models. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–10 (2022)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-Resolution Image Synthesis with Latent Diffusion Models, CVPR2022. arXiv:2112.10752 (2022)
Nichol, A., et al.: Glide: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)
Zhao, A., et al.: Domain-adaptive few-shot learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1390–1399 (2021)
Robb, E., Chu, W.S., Kumar, A., Huang, J.B.: Few-shot adaptation of generative adversarial networks. arXiv preprint arXiv:2010.11943 (2020)
Ojha, U., et al.: Few-shot image generation via cross-domain correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10743–10752 (2021)
Li, Y., Zhang, R., Lu, J., Shechtman, E.: Few-shot image generation with elastic weight consolidation. arXiv preprint arXiv:2012.02780 (2020)
Zhao, M., Cong, Y., Carin, L.: On leveraging pretrained GANs for generation with limited data. In: International Conference on Machine Learning, pp. 11340–11351. PMLR (2020)
Zhao, Y., Ding, H., Huang, H., Cheung, N.M.: A closer look at few-shot image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, GAN Adaptation, pp. 9140–9150 (2022)
Hong, Y., Niu, L., Zhang, J., Zhang, L.: Few-shot Image Generation Using Discrete Content Representation. arXiv preprint arXiv:2207.10833. ACM MM (2022)
Zhu, J., Ma, H., Chen, J., Yuan, J.: Few-shot image generation with diffusion models. arXiv preprint arXiv:2211.03264 (2022)
Liang, W., Liu, Z., Liu, C.: Dawson: A domain adaptive few shot generation framework. arXiv preprint arXiv:2001.00576 (2020)
Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: ICML 2021 (2021)
Wang, W., et al.: SinDiffusion: Learning a Diffusion Model from a Single Natural Image. arXiv:2211.12445 [cs] (2022)
Giannone, G., Nielsen, D., Winther, O.: Few-Shot Diffusion Models. Technical report arXiv:2205.15463 (2022)
Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)
Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE (2008)
Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10551–10560 (2019)
Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)
Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)
Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hou, J., Luo, L., Yang, J. (2023). Local-Fusion Diffusion Model for Enhancing Few-Shot Image Generation. In: Lu, H., et al. Image and Graphics. ICIG 2023. Lecture Notes in Computer Science, vol 14355. Springer, Cham. https://doi.org/10.1007/978-3-031-46305-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-46305-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46304-4
Online ISBN: 978-3-031-46305-1
eBook Packages: Computer ScienceComputer Science (R0)