Skip to main content

Dual Fusion Network for Hyperspectral Semantic Segmentation

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14356))

Included in the following conference series:

  • 331 Accesses

Abstract

With the development of imaging technology, it becomes increasingly easy to obtain hyperspectral images (HSI) containing rich spectral information. The application of hyperspectral images in autonomous driving is expected to become a reality. Hyperspectral images have higher dimensions and more information than RGB images, which brings the challenge of training with limited samples. It is not easy to train satisfactory semantic segmentation models directly from hyperspectral images. In this paper, we propose a hyperspectral dual-fusion (hyperDF) network that can fully utilize the pre-training knowledge of the RGB modality to improve the performance of hyperspectral semantic segmentation. Specifically, we generate pseudo-color images from hyperspectral images to simulate RGB signals in order to make better use of the pre-trained RGB semantic segmentation models. The pseudo-color and hyperspectral images are processed in a dual encoder structure and then fused through a channel-wise attention fusion module. Finally, a multi-scale decoder injected with low-level features is used to predict the semantic segmentation results. Experimental results on the Hyperspectral City V2.0 dataset show that our method achieves state-of-the-art results, with a mIoU of 51.68%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hyperspectral city challenge (2021). https://pbdl-ws.github.io/pbdl2021/challenge/index.html

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  3. Berman, M., Triki, A.R., Blaschko, M.B.: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413–4421 (2018)

    Google Scholar 

  4. Cao, X., Tong, X., Dai, Q., Lin, S.: High resolution multispectral video capture with a hybrid camera system. In: CVPR 2011, pp. 297–304. IEEE (2011)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  6. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  7. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  8. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  11. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019)

    Google Scholar 

  12. iori2333: Hyperspectral city v2 benchmark. https://github.com/iori2333/HSICityV2-Benchmark

  13. Kemker, R., Kanan, C.: Self-taught feature learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(5), 2693–2705 (2017)

    Article  Google Scholar 

  14. Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., Benediktsson, J.A.: Deep learning for hyperspectral image classification: an overview. IEEE Trans. Geosci. Remote Sens. 57(9), 6690–6709 (2019)

    Article  Google Scholar 

  15. Li, Z., Xiong, F., Zhou, J., Wang, J., Lu, J., Qian, Y.: Bae-net: a band attention aware ensemble network for hyperspectral object tracking. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2106–2110. IEEE (2020)

    Google Scholar 

  16. Liu, Z., Wang, X., Zhong, Y., Shu, M., Sun, C.: Siamhyper: learning a hyperspectral object tracker from an RGB-based tracker. IEEE Trans. Image Process. 31, 7116–7129 (2022)

    Article  Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  18. Lu, J., Gong, P., Ye, J., Zhang, C.: Learning from very few samples: a survey. arXiv preprint arXiv:2009.02653 (2020)

  19. Pan, B., Shi, Z., Xu, X., Shi, T., Zhang, N., Zhu, X.: CoinNet: copy initialization network for multispectral imagery semantic segmentation. IEEE Geosci. Remote Sens. Lett. 16(5), 816–820 (2018)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Sun, H., Zheng, X., Lu, X.: A supervised segmentation network for hyperspectral image classification. IEEE Trans. Image Process. 30, 2810–2825 (2021)

    Article  Google Scholar 

  22. Sun, K., et al.: High-resolution representations for labeling pixels and regions. arXiv preprint arXiv:1904.04514 (2019)

  23. Vunckx, K., Charle, W.: Accurate video-rate multi-spectral imaging using imec snapshot sensors. In: 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–7. IEEE (2021)

    Google Scholar 

  24. Wang, C., Ye, M., Lei, L., Xiong, F., Qian, Y.: Cross-domain attention network for hyperspectral image classification. In: IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 1564–1567. IEEE (2022)

    Google Scholar 

  25. Wang, X., Tan, K., Du, Q., Chen, Y., Du, P.: Cva 2 e: a conditional variational autoencoder with an adversarial training process for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 58(8), 5676–5692 (2020)

    Article  Google Scholar 

  26. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. Adv. Neural. Inf. Process. Syst. 34, 12077–12090 (2021)

    Google Scholar 

  27. Xu, C., et al.: Image2point: 3D point-cloud understanding with 2d image pretrained models. In: ECCV 2022, Part XXXVII. LNCS, vol. 13697, pp. 638–656. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_36

    Chapter  Google Scholar 

  28. Yang, J., Zhao, Y.Q., Chan, J.C.W.: Learning and transferring deep joint spectral-spatial features for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 55(8), 4729–4742 (2017)

    Article  Google Scholar 

  29. Zhang, P., Zhao, J., Wang, D., Lu, H., Ruan, X.: Visible-thermal UAV tracking: a large-scale benchmark and new baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8886–8895 (2022)

    Google Scholar 

  30. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  31. Zhu, L., Chen, Y., Ghamisi, P., Benediktsson, J.A.: Generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 56(9), 5046–5063 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grant 62106106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, X., Gu, S., Yang, J. (2023). Dual Fusion Network for Hyperspectral Semantic Segmentation. In: Lu, H., et al. Image and Graphics. ICIG 2023. Lecture Notes in Computer Science, vol 14356. Springer, Cham. https://doi.org/10.1007/978-3-031-46308-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46308-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46307-5

  • Online ISBN: 978-3-031-46308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics