Skip to main content

A Stable Long-Term Tracking Method for Group-Housed Pigs

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14356))

Included in the following conference series:

  • 483 Accesses

Abstract

In recent years, computer vision technologies have been increasingly applied to livestock farming for improving efficiency and reducing the labor force in surveillance. Tracking of group-housed pigs is an important task for monitoring the daily behaviors of pigs, which can be used to preliminarily evaluate the health status of pigs. Most researchers directly apply existing multi-object tracking algorithms to this task, but often suffer from tracking failures due to false detection, stacking, occlusion, video jamming, etc. It usually produces a lot of incorrect ID switches that are disastrous for follow-up tasks. In this paper, we propose a group-housed pigs tracking method that can achieve stable long-term tracking. As the identity and number of monitored pigs remain unchanged during a feeding period, we introduce a new object matching mechanism with a classifier, which avoids most incorrect ID switches and effectively improves the matching accuracy. Thus, our tracking method is more robust to complex posture variations of the pig and achieves stable long-term tracking. The experimental results on real videos captured in a pigs farm prove the effectiveness of our method.

Supported by ā€œScientific and Technological Innovation 2030ā€ Program of China Ministry of Science and Technology (2021ZD0113803).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. EURASIP J. Image Video Process. 2008, 1ā€“10 (2008)

    Article  Google Scholar 

  2. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464ā€“3468. IEEE (2016)

    Google Scholar 

  3. Chen, C., Zhu, W., Norton, T.: Behaviour recognition of pigs and cattle: journey from computer vision to deep learning. Comput. Electron. Agric. 187, 106255 (2021)

    Article  Google Scholar 

  4. Cowton, J., Kyriazakis, I., Bacardit, J.: Automated individual pig localisation, tracking and behaviour metric extraction using deep learning. IEEE Access 7, 108049ā€“108060 (2019)

    Article  Google Scholar 

  5. Cronin, G., Rault, J., Glatz, P., et al.: Lessons learned from past experience with intensive livestock management systems. Rev. Sci. Tech. 33(1), 139ā€“51 (2014)

    Article  Google Scholar 

  6. Gan, H., et al.: Automated piglet tracking using a single convolutional neural network. Biosys. Eng. 205, 48ā€“63 (2021)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770ā€“778 (2016)

    Google Scholar 

  8. Jocher, G., et al.: ultralytics/yolov5: v5. 0-YOLOv5-P6 1280 models AWS supervise. ly and YouTube integrations. Zenodo 11 (2021)

    Google Scholar 

  9. Kalake, L., Wan, W., Hou, L.: Analysis based on recent deep learning approaches applied in real-time multi-object tracking: a review. IEEE Access 9, 32650ā€“32671 (2021)

    Article  Google Scholar 

  10. Kashiha, M., et al.: Automatic identification of marked pigs in a pen using image pattern recognition. Comput. Electron. Agric. 93, 111ā€“120 (2013)

    Article  Google Scholar 

  11. Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Kim, T.K.: Multiple object tracking: a literature review. Artif. Intell. 293, 103448 (2021)

    Article  MathSciNet  Google Scholar 

  12. Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844ā€“8854 (2022)

    Google Scholar 

  13. Pedersen, L.J.: Overview of commercial pig production systems and their main welfare challenges. In: Advances in Pig Welfare, pp. 3ā€“25. Elsevier (2018)

    Google Scholar 

  14. Sherwin, C., et al.: Ethical treatment of animals in applied animal behavior research. Int. Soc. Appl. Ethol. (2017)

    Google Scholar 

  15. Sun, L., et al.: Multi target pigs tracking loss correction algorithm based on faster R-CNN. Int. J. Agric. Biol. Eng. 11(5), 192ā€“197 (2018)

    Google Scholar 

  16. Sun, P., et al.: TransTrack: multiple object tracking with transformer. arXiv preprint arXiv:2012.15460 (2020)

  17. T. Psota, E., Schmidt, T., Mote, B., C. PĆ©rez, L.: Long-term tracking of group-housed livestock using keypoint detection and map estimation for individual animal identification. Sensors 20(13), 3670 (2020)

    Google Scholar 

  18. USDA, F., et al.: Livestock and poultry: world markets and trade. United States Department of Agriculture, Foreign Agricultural Service (2006)

    Google Scholar 

  19. USDA, F., et al.: Livestock and poultry, world markets and trade. US Department of Agriculture Foreign Agricultural Service, Washington, DC, pp. 08ā€“09 (2023)

    Google Scholar 

  20. Wang, M., Larsen, M.L., Liu, D., Winters, J.F., Rault, J.L., Norton, T.: Towards re-identification for long-term tracking of group housed pigs. Biosys. Eng. 222, 71ā€“81 (2022)

    Article  Google Scholar 

  21. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645ā€“3649. IEEE (2017)

    Google Scholar 

  22. Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. In: Avidan, S., Brostow, G., CissĆ©, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXII. LNCS, vol. 13682, pp. 1ā€“21. Springer, Cham (2022)

    Chapter  Google Scholar 

  23. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: A simple baseline for multi-object tracking. arXiv preprint arXiv:2004.01888 7(8) (2020)

  24. Zhou, X., Koltun, V., KrƤhenbĆ¼hl, P.: Tracking objects as points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part IV. LNCS, vol. 12349, pp. 474ā€“490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peipei Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, S., Gong, J., Yang, P., Liang, C., Huang, L. (2023). A Stable Long-Term Tracking Method for Group-Housed Pigs. In: Lu, H., et al. Image and Graphics. ICIG 2023. Lecture Notes in Computer Science, vol 14356. Springer, Cham. https://doi.org/10.1007/978-3-031-46308-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46308-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46307-5

  • Online ISBN: 978-3-031-46308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics