Abstract
In recent years, computer vision technologies have been increasingly applied to livestock farming for improving efficiency and reducing the labor force in surveillance. Tracking of group-housed pigs is an important task for monitoring the daily behaviors of pigs, which can be used to preliminarily evaluate the health status of pigs. Most researchers directly apply existing multi-object tracking algorithms to this task, but often suffer from tracking failures due to false detection, stacking, occlusion, video jamming, etc. It usually produces a lot of incorrect ID switches that are disastrous for follow-up tasks. In this paper, we propose a group-housed pigs tracking method that can achieve stable long-term tracking. As the identity and number of monitored pigs remain unchanged during a feeding period, we introduce a new object matching mechanism with a classifier, which avoids most incorrect ID switches and effectively improves the matching accuracy. Thus, our tracking method is more robust to complex posture variations of the pig and achieves stable long-term tracking. The experimental results on real videos captured in a pigs farm prove the effectiveness of our method.
Supported by āScientific and Technological Innovation 2030ā Program of China Ministry of Science and Technology (2021ZD0113803).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. EURASIP J. Image Video Process. 2008, 1ā10 (2008)
Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464ā3468. IEEE (2016)
Chen, C., Zhu, W., Norton, T.: Behaviour recognition of pigs and cattle: journey from computer vision to deep learning. Comput. Electron. Agric. 187, 106255 (2021)
Cowton, J., Kyriazakis, I., Bacardit, J.: Automated individual pig localisation, tracking and behaviour metric extraction using deep learning. IEEE Access 7, 108049ā108060 (2019)
Cronin, G., Rault, J., Glatz, P., et al.: Lessons learned from past experience with intensive livestock management systems. Rev. Sci. Tech. 33(1), 139ā51 (2014)
Gan, H., et al.: Automated piglet tracking using a single convolutional neural network. Biosys. Eng. 205, 48ā63 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770ā778 (2016)
Jocher, G., et al.: ultralytics/yolov5: v5. 0-YOLOv5-P6 1280 models AWS supervise. ly and YouTube integrations. Zenodo 11 (2021)
Kalake, L., Wan, W., Hou, L.: Analysis based on recent deep learning approaches applied in real-time multi-object tracking: a review. IEEE Access 9, 32650ā32671 (2021)
Kashiha, M., et al.: Automatic identification of marked pigs in a pen using image pattern recognition. Comput. Electron. Agric. 93, 111ā120 (2013)
Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Kim, T.K.: Multiple object tracking: a literature review. Artif. Intell. 293, 103448 (2021)
Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844ā8854 (2022)
Pedersen, L.J.: Overview of commercial pig production systems and their main welfare challenges. In: Advances in Pig Welfare, pp. 3ā25. Elsevier (2018)
Sherwin, C., et al.: Ethical treatment of animals in applied animal behavior research. Int. Soc. Appl. Ethol. (2017)
Sun, L., et al.: Multi target pigs tracking loss correction algorithm based on faster R-CNN. Int. J. Agric. Biol. Eng. 11(5), 192ā197 (2018)
Sun, P., et al.: TransTrack: multiple object tracking with transformer. arXiv preprint arXiv:2012.15460 (2020)
T. Psota, E., Schmidt, T., Mote, B., C. PĆ©rez, L.: Long-term tracking of group-housed livestock using keypoint detection and map estimation for individual animal identification. Sensors 20(13), 3670 (2020)
USDA, F., et al.: Livestock and poultry: world markets and trade. United States Department of Agriculture, Foreign Agricultural Service (2006)
USDA, F., et al.: Livestock and poultry, world markets and trade. US Department of Agriculture Foreign Agricultural Service, Washington, DC, pp. 08ā09 (2023)
Wang, M., Larsen, M.L., Liu, D., Winters, J.F., Rault, J.L., Norton, T.: Towards re-identification for long-term tracking of group housed pigs. Biosys. Eng. 222, 71ā81 (2022)
Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645ā3649. IEEE (2017)
Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. In: Avidan, S., Brostow, G., CissĆ©, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXII. LNCS, vol. 13682, pp. 1ā21. Springer, Cham (2022)
Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: A simple baseline for multi-object tracking. arXiv preprint arXiv:2004.01888 7(8) (2020)
Zhou, X., Koltun, V., KrƤhenbĆ¼hl, P.: Tracking objects as points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part IV. LNCS, vol. 12349, pp. 474ā490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_28
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gao, S., Gong, J., Yang, P., Liang, C., Huang, L. (2023). A Stable Long-Term Tracking Method for Group-Housed Pigs. In: Lu, H., et al. Image and Graphics. ICIG 2023. Lecture Notes in Computer Science, vol 14356. Springer, Cham. https://doi.org/10.1007/978-3-031-46308-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-46308-2_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46307-5
Online ISBN: 978-3-031-46308-2
eBook Packages: Computer ScienceComputer Science (R0)