Skip to main content

Adaptive Fine-Grained Region Matching for Image Harmonization

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14357))

Included in the following conference series:

  • 676 Accesses

Abstract

Image harmonization aims to generate composite images that are visually consistent by adjusting the foreground to be compatible with the background. However, previous image harmonization methods overlook the fact that in a real image, the appearance (e.g., illumination, color temperature, saturation, hue, and texture) of different regions can vary significantly depending on content and position. For each foreground region, the background regions related to it should be taken as major references to adjust its appearance. To address this, a fine-grained appearance translation strategy is designed in this work. When adjusting the appearance of each foreground region, our method pays more attention to the background regions that are more relevant to it based on content similarity and position information. Furthermore, a multi-scale feature calibration strategy is introduced to adaptively calibrate the fine-grained features. Finally, an adaptive reconstruction strategy is proposed to further improve the harmonization result. Extensive experiments show our method significantly reduces parameters and achieves state-of-the-art performance compared with previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xue, S., Agarwala, A., Dorsey, J., et al.: Understanding and improving the realism of image composites. ACM Trans. Graph. (TOG) 31(4), 1ā€“10 (2012)

    Article  Google Scholar 

  2. Cun, X., Pun, C.M.: Improving the harmony of the composite image by spatial-separated attention module. IEEE Trans. Image Process. 29, 4759ā€“4771 (2020)

    Article  MATH  Google Scholar 

  3. Zhang, L., Wen, T., Min, J., et al.: Learning object placement by inpainting for compositional data augmentation. In: ECCV, pp. 566ā€“581 (2020)

    Google Scholar 

  4. Tsai, Y.H., Shen, X., Lin, Z., et al.: Deep image harmonization. In: CVPR, pp. 2799ā€“2807 (2017)

    Google Scholar 

  5. Sofiiuk, K., Popenova, P., Konushin, A.: Foreground-aware semantic representations for image harmonization. In: WACV, pp. 1619ā€“1628 (2021)

    Google Scholar 

  6. Cong, W., Zhang, J., Niu, L., et al.: DoveNet: deep image harmonization via domain verification. In: CVPR, pp. 8391ā€“8400 (2020)

    Google Scholar 

  7. Cong, W., Niu, L., Zhang, J., et al.: BargainNet: background-guided domain translation for image harmonization. In: ICME, pp. 1ā€“6 (2021)

    Google Scholar 

  8. Guo, Z., Zhang, H., Jiang, Y., et al.: Intrinsic image harmonization. In: CVPR, pp. 16362ā€“16371 (2021)

    Google Scholar 

  9. Guo, Z., Gao, D., Zhang, H., et al.: Image harmonization with transformer. In: ICCV, pp. 14850ā€“14859 (2021)

    Google Scholar 

  10. Guo, Z., Gou, Z., Zhang, B., et al.: Transformer for image harmonization and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 45, 12960ā€“12977 (2022)

    Article  Google Scholar 

  11. Ling, J., Xue, H., Song, L., et al.: Region-aware adaptive instance normalization for image harmonization. In: CVPR, pp. 9357ā€“9366 (2021)

    Google Scholar 

  12. Zhu, Z., Zhang, Z., Lin, Z., et al.: Image harmonization by matching regional references. arXiv preprint arXiv:2204.04715 (2022)

  13. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  14. Reinhard, E., Adhikhmin, M., Gooch, B., et al.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34ā€“41 (2001)

    Article  Google Scholar 

  15. Jia, J., Sun, J., Tang, C.K., et al.: Drag-and-drop pasting. ACM Trans. Graph. (TOG) 25(3), 631ā€“637 (2006)

    Article  Google Scholar 

  16. Tao, M.W., Johnson, M.K., Paris, S., et al.: Error-tolerant image compositing. Int. J. Comput. Vision 103, 178ā€“189 (2013)

    Article  MATH  Google Scholar 

  17. PĆ©rez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. (TOG) 22(3), 313ā€“318 (2003)

    Article  Google Scholar 

  18. Sunkavalli, K., Johnson, M.K., Matusik, W., et al.: Multi-scale image harmonization. ACM Trans. Graph. (TOG) 29(4), 1ā€“10 (2010)

    Article  Google Scholar 

  19. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: NeurIPS, pp. 6000ā€“6010 (2017)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: MICCAI, pp. 234ā€“241 (2015)

    Google Scholar 

  21. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV, pp. 1501ā€“1510 (2017)

    Google Scholar 

  22. Ulyanov, D., Vedaldi, A., Lempitsky, Y.: Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  23. Liu, Z., Lin, Y., Cao, Y., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV, pp. 9992ā€“10002 (2021)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgements.

This work was supported by the Natural Science Foundation of China (62276242), National Aviation Science Foundation (2022Z071078001), CAAI-Huawei MindSpore Open Fund (CAAIXSJLJJ-2021-016B, CAAIXSJLJJ-2022-001A), Anhui Province Key Research and Development Program (202104a05020007), USTC-IAT Application Sci. & Tech. Achievement Cultivation Program (JL06521001Y), Sci. & Tech. Innovation Special Zone (20-163-14-LZ-001-004-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ju, L., Pu, C., Gao, F., Yu, J. (2023). Adaptive Fine-Grained Region Matching for Image Harmonization. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14357. Springer, Cham. https://doi.org/10.1007/978-3-031-46311-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46311-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46310-5

  • Online ISBN: 978-3-031-46311-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics