Skip to main content

MGP-Net: Margin-Global Information Optimization-Prototype Network for Few-Shot Ancient Inscriptions Classification

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14357))

Included in the following conference series:

  • 343 Accesses

Abstract

This article focuses on the challenge of classifying bronze inscription rubbings, which have a limited number of samples and diverse characteristics. Traditional classification methods have failed to produce satisfactory results. With the emergence of meta-learning, few-shot image classification has become a popular research topic. This approach allows a classifier to recognize datasets outside the training set and complete classification with only a small number of samples. However, due to the existence of multiple categories in the ancient inscription dataset and the tendency for overfitting, existing prototype network structures have not achieved satisfactory prediction accuracy on ancient inscription datasets. To address this challenge, we propose two strategies. The first strategy is the Margin Prototype (MP), which expands the distribution of different class prototypes during the softmax operation. The second strategy is the global information optimization strategy (GioP), which reverses the prediction of support set samples to obtain more representative prototypes. Our proposed method achieves better accuracy without adding new parameters to the model. The end-to-end structural pattern remains unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma, M., Mei, S., Wan, S., Hou, J., Wang, Z., Feng, D.D.: Video summarization via block sparse dictionary selection. Neurocomputing 378, 197–209 (2020)

    Article  Google Scholar 

  2. Cheng, G., Yang, C., Yao, X., Guo, L., Han, J.: When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 56(5), 2811–2821 (2018)

    Article  Google Scholar 

  3. Mei, S., Ji, J., Geng, Y., Zhang, Z., Li, X., Du, Q.: Unsupervised spatial-spectral feature learning by 3d convolutional autoencoder for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 57(9), 6808–6820 (2019)

    Article  Google Scholar 

  4. Liu, Y., Suen, C.Y., Liu, Y., Ding, L.: Scene classification using hierarchical Wasserstein CNN. IEEE Trans. Geosci. Remote Sens. 57(5), 2494–2509 (2018)

    Article  Google Scholar 

  5. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition. arXiv preprint arXiv:1406.2227 (2014)

  6. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: Panet: few-shot image semantic segmentation with prototype alignment. In: proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019)

    Google Scholar 

  7. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: International Conference on Machine Learning, pp. 1842–1850. PMLR (2016)

    Google Scholar 

  8. Zhang, S., Zhou, Z., Huang, Z., Wei, Z.: Few-shot classification on graphs with structural regularized GCNs (2019)

    Google Scholar 

  9. Munkhdalai, T., Yu, H.: Meta networks. In: International Conference on Machine Learning, pp. 2554–2563. PMLR (2017)

    Google Scholar 

  10. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  11. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  12. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  13. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  14. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. arXiv preprint arXiv:1612.02295 (2016)

  15. Cheng, G., et al.: SPnet: Siamese-prototype network for few-shot remote sensing image scene classification. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2021)

    Google Scholar 

  16. Liu, J., Song, L., Qin, Y.: Prototype rectification for few-shot learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 741–756. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_43

    Chapter  Google Scholar 

  17. Wang, J., Zhai, Y.: Prototypical Siamese networks for few-shot learning. In: 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC), pp. 178–181. IEEE (2020)

    Google Scholar 

  18. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2. Lille (2015)

    Google Scholar 

  19. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple visual concepts. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 33 (2011)

    Google Scholar 

  20. Ji, Z., Chai, X., Yu, Y., Pang, Y., Zhang, Z.: Improved prototypical networks for few-shot learning. Pattern Recogn. Lett. 140, 81–87 (2020)

    Article  Google Scholar 

  21. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, J., He, X., Liu, H., He, X. (2023). MGP-Net: Margin-Global Information Optimization-Prototype Network for Few-Shot Ancient Inscriptions Classification. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14357. Springer, Cham. https://doi.org/10.1007/978-3-031-46311-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46311-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46310-5

  • Online ISBN: 978-3-031-46311-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics