Skip to main content

Scale-Adaptive Multi-area Representation forĀ Instance Segmentation

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14358))

Included in the following conference series:

  • 319 Accesses

Abstract

For the instance segmentation task, instance representation directly determines the quality of generated masks, so achieving efficient and accurate instance representation is crucial. Grid-based or box-based instance representation contains redundant information from background or other instances, activation-based instance representation includes a small part of the instance. The instance representation based on current methods is not accurate enough. In order to represent more information of an instance under the condition of excluding irrelevant information, this paper proposes multi-area representation (MAR), which is in the form of a scale-adaptive multi-area activation map generated by a multi-branch structure. MAR can adapt to the structure and pose of an instance, thereby representing the shape and size of the instance. Experiments show that, compared with SparseInst, MARInst can improve the performance of instance segmentation and keep the inference speed and training memory almost unchanged. In particular, MARInst achieved 30.3% AP on the MS COCO 2017 val, and 1.6% AP higher than SparseInst when using the same ResNet-50 backbone, proving the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    baseline means that SparseInst does not employ G-IAM and data augmentation.

References

  1. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: YOLACT: real-time instance segmentation. In: CVPR (2019)

    Google ScholarĀ 

  2. Cheng, T., et al.: Sparse instance activation for real-time instance segmentation. In: CVPR (2022)

    Google ScholarĀ 

  3. De Brabandere, B., Neven, D., Van Gool, L.: Semantic instance segmentation with a discriminative loss function. arXiv preprint arXiv:1708.02551 (2017)

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google ScholarĀ 

  5. Gao, N., et al.: SSAP: single-shot instance segmentation with affinity pyramid. In: ICCV (2019)

    Google ScholarĀ 

  6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS (2010)

    Google ScholarĀ 

  7. He, K., Gkioxari, G., DollƔr, P., Girshick, R.: Mask r-cnn. In: ICCV (2017)

    Google ScholarĀ 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google ScholarĀ 

  9. Lee, Y., Park, J.: CenterMask: real-time anchor-free instance segmentation. In: CVPR (2020)

    Google ScholarĀ 

  10. Lin, T.Y., DollƔr, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google ScholarĀ 

  11. Lin, T.-Y., et al.: Microsoft COCO: Common Objects in Context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740ā€“755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    ChapterĀ  Google ScholarĀ 

  12. Liu, S., Jia, J., Fidler, S., Urtasun, R.: SGN: sequential grouping networks for instance segmentation. In: ICCV (2017)

    Google ScholarĀ 

  13. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR (2018)

    Google ScholarĀ 

  14. Liu, Y., et al.: Affinity Derivation and Graph Merge for Instance Segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 708ā€“724. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_42

    ChapterĀ  Google ScholarĀ 

  15. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)

    Google ScholarĀ 

  16. Peng, S., Jiang, W., Pi, H., Li, X., Bao, H., Zhou, X.: Deep snake for real-time instance segmentation. In: CVPR (2020)

    Google ScholarĀ 

  17. Qi, L., et al.: Pointins: point-based instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6377ā€“6392 (2021)

    ArticleĀ  Google ScholarĀ 

  18. Tian, Z., Shen, C., Chen, H.: Conditional Convolutions for Instance Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 282ā€“298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_17

    ChapterĀ  Google ScholarĀ 

  19. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google ScholarĀ 

  20. Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L.: SOLO: Segmenting Objects by Locations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 649ā€“665. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_38

    ChapterĀ  Google ScholarĀ 

  21. Wang, X., Zhang, R., Kong, T., Li, L., Shen, C.: Solov2: dynamic and fast instance segmentation. In: NIPS (2020)

    Google ScholarĀ 

  22. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.com/facebookresearch/detectron2 (2019)

  23. Xie, E., et al.: PolarMask: single shot instance segmentation with polar representation. In: CVPR (2020)

    Google ScholarĀ 

  24. Xie, E., Wang, W., Ding, M., Zhang, R., Luo, P.: Polarmask++: enhanced polar representation for single-shot instance segmentation and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5385ā€“5400 (2021)

    Google ScholarĀ 

  25. Yang, H., Zheng, L., Barzegar, S.G., Zhang, Y., Xu, B.: BorderPointsMask: one-stage instance segmentation with boundary points representation. Neurocomputing 467, 348ā€“359 (2022)

    ArticleĀ  Google ScholarĀ 

  26. Zhang, R., Tian, Z., Shen, C., You, M., Yan, Y.: Mask encoding for single shot instance segmentation. In: CVPR (2020)

    Google ScholarĀ 

  27. Zhang, T., Wei, S., Ji, S.: E2ec: an end-to-end contour-based method for high-quality high-speed instance segmentation. In: CVPR (2022)

    Google ScholarĀ 

Download references

Acknowledgment

This work is supported by The National Key R &D Program of China (No. 2021ZD0111902), NSFC (U21B2038, 61876012), Foundation for China university Industry-university Research Innovation (No. 2021JQR023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Wang, L., Li, S., Xu, K., Yin, B. (2023). Scale-Adaptive Multi-area Representation forĀ Instance Segmentation. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14358. Springer, Cham. https://doi.org/10.1007/978-3-031-46314-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46314-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46313-6

  • Online ISBN: 978-3-031-46314-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics