Abstract
Last several years, NeRF achieved great success in view synthesis since it can render high-quality images in a complex scene. However, we find that its ability to rebuild a large scene is low because images that are far apart and do not overlap with each other will affect each other in the training process. In order to solve this problem, we propose Cluster-based NeRF, which splits the original input images into several clusters and then train a NeRF for each cluster. We also design an algorithm to improve the rendering quality in the overlapping areas. In the experiments, we show that our method outperforms the traditional NeRF on both the blender and real world dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured Lumigraph rendering. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 425–432 (2001)
Garrity, M.P.: Raytracing irregular volume data. In: Proceedings of the 1990 Workshop on Volume Visualization, pp. 35–40 (1990)
Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit functions for 3D shape. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4857–4866 (2020)
Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The Lumigraph. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54 (1996)
Hartley, R., Trumpf, J., Dai, Y., Li, H.: Rotation averaging. Int. J. Comput. Vis. 103(3), 267–305 (2013)
Hornik, K.M., Stinchcomb, M., White, H.: Multilayer feedforward networks are universal approximator. Neural Netw. 2(5), 359–366 (1989)
Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T., et al.: Local implicit grid representations for 3D scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6001–6010 (2020)
Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. ACM SIGGRAPH Comput. Graph. 18(3), 165–174 (1984)
Kendall, A., Grimes, M., Cipolla, R.: PoseNet: convolutional networks for real-time 6-DOF camera relocalization. CoRR abs/1505.07427 (2015). arXiv preprint arxiv:1505.07427 (2015)
Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Int. J. Comput. Vis. 38(3), 199–218 (2000)
Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. arXiv preprint arXiv:1906.07751 (2019)
Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.: NeRF in the wild: neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7210–7219 (2021)
Max, N.: Optical models for direct volume rendering. IEEE TVCG 1(2), 99–108 (1995)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)
Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504–3515 (2020)
Quei-An, C.: nerf_pl: a pytorch-lightning implementation of NeRF (2020). https://github.com/kwea123/nerf_pl/
Rahaman, N., Arpit, D., Baratin, A., Draxler, F., Courville, A.: On the spectral bias of deep neural networks (2018)
Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. Int. J. Comput. Vis. 35(2), 151–173 (1999)
Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Waechter, M., Moehrle, N., Goesele, M.: Let there be color! Large-scale texturing of 3D reconstructions. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 836–850. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_54
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Zhou, W.: Image quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 13, 600–613 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ye, S., Li, F., Huang, R. (2023). Synthesizing a Large Scene with Multiple NeRFs. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14359. Springer, Cham. https://doi.org/10.1007/978-3-031-46317-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-46317-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46316-7
Online ISBN: 978-3-031-46317-4
eBook Packages: Computer ScienceComputer Science (R0)