Skip to main content

Synthesizing a Large Scene with Multiple NeRFs

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14359))

Included in the following conference series:

  • 249 Accesses

Abstract

Last several years, NeRF achieved great success in view synthesis since it can render high-quality images in a complex scene. However, we find that its ability to rebuild a large scene is low because images that are far apart and do not overlap with each other will affect each other in the training process. In order to solve this problem, we propose Cluster-based NeRF, which splits the original input images into several clusters and then train a NeRF for each cluster. We also design an algorithm to improve the rendering quality in the overlapping areas. In the experiments, we show that our method outperforms the traditional NeRF on both the blender and real world dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured Lumigraph rendering. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 425–432 (2001)

    Google Scholar 

  2. Garrity, M.P.: Raytracing irregular volume data. In: Proceedings of the 1990 Workshop on Volume Visualization, pp. 35–40 (1990)

    Google Scholar 

  3. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit functions for 3D shape. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4857–4866 (2020)

    Google Scholar 

  4. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The Lumigraph. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54 (1996)

    Google Scholar 

  5. Hartley, R., Trumpf, J., Dai, Y., Li, H.: Rotation averaging. Int. J. Comput. Vis. 103(3), 267–305 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hornik, K.M., Stinchcomb, M., White, H.: Multilayer feedforward networks are universal approximator. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  7. Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T., et al.: Local implicit grid representations for 3D scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6001–6010 (2020)

    Google Scholar 

  8. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. ACM SIGGRAPH Comput. Graph. 18(3), 165–174 (1984)

    Article  Google Scholar 

  9. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: convolutional networks for real-time 6-DOF camera relocalization. CoRR abs/1505.07427 (2015). arXiv preprint arxiv:1505.07427 (2015)

  10. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Int. J. Comput. Vis. 38(3), 199–218 (2000)

    Article  MATH  Google Scholar 

  11. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. arXiv preprint arXiv:1906.07751 (2019)

  12. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.: NeRF in the wild: neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7210–7219 (2021)

    Google Scholar 

  13. Max, N.: Optical models for direct volume rendering. IEEE TVCG 1(2), 99–108 (1995)

    Google Scholar 

  14. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  15. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)

    Article  Google Scholar 

  16. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504–3515 (2020)

    Google Scholar 

  17. Quei-An, C.: nerf_pl: a pytorch-lightning implementation of NeRF (2020). https://github.com/kwea123/nerf_pl/

  18. Rahaman, N., Arpit, D., Baratin, A., Draxler, F., Courville, A.: On the spectral bias of deep neural networks (2018)

    Google Scholar 

  19. Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. Int. J. Comput. Vis. 35(2), 151–173 (1999)

    Article  Google Scholar 

  20. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  21. Waechter, M., Moehrle, N., Goesele, M.: Let there be color! Large-scale texturing of 3D reconstructions. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 836–850. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_54

    Chapter  Google Scholar 

  22. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  23. Zhou, W.: Image quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 13, 600–613 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, S., Li, F., Huang, R. (2023). Synthesizing a Large Scene with Multiple NeRFs. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14359. Springer, Cham. https://doi.org/10.1007/978-3-031-46317-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46317-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46316-7

  • Online ISBN: 978-3-031-46317-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics