Abstract
Neural implicit representations are highly effective for single-view 3D reconstruction (SVR). It represents 3D shapes as neural fields and conditions shape prediction on input image features. Image features can be less effective when significant variations of occlusions, views, and appearances exist from the image. To learn more robust features, we design a new feature encoding scheme that works in both image and shape space. Specifically, we present a geometry-aware 2D convolutional kernel to learn image appearance and view information along with geometric relations. The convolutional kernel operates at the 2D projections of a point-based 3D geometric structure, called spatial pattern. Furthermore, to enable the network to discover adaptive spatial patterns that capture non-local contexts, the kernel is devised to be deformable and exploited by a spatial pattern generator. Experimental results on both synthetic and real datasets demonstrate the superiority of the proposed method.
Y. Zhuang and Y. Wang—Contributed equally to this work.
The source code can be found at https://github.com/yixin26/SVR-SP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: International Conference on Machine Learning, pp. 40–49. PMLR (2018)
Atzmon, M., Lipman, Y.: SAL: sign agnostic learning of shapes from raw data. In: CVPR, pp. 2562–2571. Computer Vision Foundation/IEEE (2020)
Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv:1512.03012 [cs.GR] (2015)
Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38
Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)
Gkioxari, G., Malik, J., Johnson, J.: Mesh R-CNN. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9785–9795 (2019)
Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. In: ICML. Proceedings of Machine Learning Research, vol. 119, pp. 3789–3799. PMLR (2020)
Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3D surface generation. In: Proceedings of the CVPR, pp. 216–224 (2018)
Insafutdinov, E., Dosovitskiy, A.: Unsupervised learning of shape and pose with differentiable point clouds. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 2807–2817 (2018)
Jiang, Y., Ji, D., Han, Z., Zwicker, M.: SDFDiff: differentiable rendering of signed distance fields for 3D shape optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1251–1261 (2020)
Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907–3916 (2018)
Li, M., Zhang, H.: D\(^{2}\)IM-Net: learning detail disentangled implicit fields from single images. arXiv preprint arXiv:2012.06650 (2020)
Lin, C.H., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense 3D object reconstruction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., Cui, Z.: DIST: rendering deep implicit signed distance function with differentiable sphere tracing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2019–2028 (2020)
Liu, S., Chen, W., Li, T., Li, H.: Soft rasterizer: differentiable rendering for unsupervised single-view mesh reconstruction. arXiv preprint arXiv:1901.05567 (2019)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggraph Comput. Graph. 21(4), 163–169 (1987)
Mandikal, P., Navaneet, K., Agarwal, M., Babu, R.V.: 3D-LMNet: latent embedding matching for accurate and diverse 3D point cloud reconstruction from a single image. arXiv preprint arXiv:1807.07796 (2018)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the CVPR (2019)
Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504–3515 (2020)
Niu, C., Li, J., Xu, K.: Im2Struct: recovering 3D shape structure from a single RGB image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4521–4529 (2018)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR (2019)
Park, J., Joo, K., Hu, Z., Liu, C.-K., So Kweon, I.: Non-local spatial propagation network for depth completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 120–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_8
Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu: pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2304–2314 (2019)
Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: Continuous 3D-structure-aware neural scene representations. In: NeurIPS, pp. 1119–1130 (2019)
Sun, X., et al.: Pix3D: dataset and methods for single-image 3D shape modeling. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: NeurIPS (2020)
Tang, J., Han, X., Pan, J., Jia, K., Tong, X.: A skeleton-bridged deep learning approach for generating meshes of complex topologies from single RGB images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4541–4550 (2019)
Thomas, H., Qi, C.R., Deschaud, J., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: ICCV, pp. 6410–6419. IEEE (2019)
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4
Wang, W., Ceylan, D., Mech, R., Neumann, U.: 3DN: 3D deformation network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1038–1046 (2019)
Wu, F., Fan, A., Baevski, A., Dauphin, Y.N., Auli, M.: Pay less attention with lightweight and dynamic convolutions. In: ICLR. OpenReview.net (2019)
Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances in Neural Information Processing Systems, pp. 82–90 (2016)
Wu, J., Zhang, C., Zhang, X., Zhang, Z., Freeman, W.T., Tenenbaum, J.B.: Learning shape priors for single-view 3D completion and reconstruction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 673–691. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_40
Wu, R., Zhuang, Y., Xu, K., Zhang, H., Chen, B.: PQ-NET: a generative part Seq2Seq network for 3D shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 829–838 (2020)
Xie, H., Yao, H., Sun, X., Zhou, S., Zhang, S.: Pix2Vox: context-aware 3D reconstruction from single and multi-view images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2690–2698 (2019)
Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface network for high-quality single-view 3D reconstruction. arXiv preprint arXiv:1905.10711 (2019)
Xu, Y., Fan, T., Yuan, Y., Singh, G.: Ladybird: quasi-Monte Carlo sampling for deep implicit field based 3D reconstruction with symmetry. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 248–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_15
Yan, X., Yang, J., Yumer, E., Guo, Y., Lee, H.: Perspective transformer nets: learning single-view 3D object reconstruction without 3D supervision. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 1704–1712 (2016)
Acknowledgements
We would like to thank the anonymous reviewers for their valuable feedback and suggestions.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhuang, Y., Wang, Y., Liu, Y., Chen, B. (2023). Neural Implicit 3D Shapes from Single Images with Spatial Patterns. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14359. Springer, Cham. https://doi.org/10.1007/978-3-031-46317-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-46317-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46316-7
Online ISBN: 978-3-031-46317-4
eBook Packages: Computer ScienceComputer Science (R0)