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Abstract

Neural implicit functions have achieved impres-
sive results for reconstructing 3D shapes from
single images. However, the image features for
describing 3D point samplings of implicit func-
tions are less effective when significant variations
of occlusions, views, and appearances exist from
the image. To better encode image features, we
study a geometry-aware convolutional kernel to
leverage geometric relationships of point sam-
plings by the proposed spatial pattern, i.e., a
structured point set. Specifically, the kernel op-
erates at 2D projections of 3D points from the
spatial pattern. Supported by the spatial pattern,
the 2D kernel encodes geometric information that
is crucial for 3D reconstruction tasks, while tra-
ditional ones mainly consider appearance infor-
mation. Furthermore, to enable the network to
discover more adaptive spatial patterns for fur-
ther capturing non-local contextual information,
the kernel is devised to be deformable manipu-
lated by a spatial pattern generator. Experimental
results on both synthetic and real datasets demon-
strate the superiority of the proposed method. Pre-
trained models, codes, and data are available at
https://github.com/yixin26/SVR-SP.

1. Introduction

3D shape reconstruction from a single image has been one
of the central problems in computer vision. Empowering the
machines with the ability to perceive the imagery and infer
the underlying 3D shapes can benefit various downstream
tasks, such as augmented reality, robot navigation, etc. How-
ever, the problem is overly ambiguous and ill-posed, and
thus remains highly challenging, due to the information loss
and occlusion occurred during the imagery capture.

In recent years, many deep learning based methods have

been proposed to infer 3D shapes from single images. These
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methods rely on learning shape priors from a large amount
of shape collections, for reasoning the underlying shape of
unseen images. To this end, various learning frameworks
have been proposed that exploit different 3D shape repre-
sentations, including point sets (Fan et al., 2017; Achlioptas
et al., 2018), voxels (Wu et al., 2016; 2018), polygonal
meshes (Groueix et al., 2018; Wang et al., 2018), and im-
plicit fields (Mescheder et al., 2019; Park et al., 2019; Chen
& Zhang, 2019). In particular, implicit field-based models
have shown impressive performance compared to the others.

Implicit field-based networks take a set of 3D samplings as
input, and predict corresponding values in accordance with
varying representations (e.g., occupancy, signed distance,
etc.). Once the network is trained, 3D shapes are identified
as the zero level of the predicted scalar fields using meshing
methods such as Marching Cubes (Lorensen & Cline, 1987).
By conditioning the 3D shape generation on the extracted
global feature of input image (Mescheder et al., 2019; Chen
& Zhang, 2019), the implicit networks are well-suited to
reconstruct 3D shapes from single images. However, this
trivial combination often fails to reconstruct fine geometric
details and produces overly smoothed surfaces.

To address this issue, DISN (Xu et al., 2019) proposes
a pixel-aligned implicit surface network where individual
point sampling is conditioned on a learned local image fea-
ture obtained by projecting the point to the image plane
according to the camera pose. With local image features, the
network predicts a residual field for refinement. However,
the strategy of associating 3D samplings with learned local
image features would become less effective when samplings
are occluded from the observation view. Hence, to represent
each point sampling with meaningful local image feature,
Ladybird (Xu et al., 2020) utilizes the feature extracted from
the 2D projection of its symmetric point obtained from the
self-reflective symmetry of the object. The reconstruction
quality is significantly improved upon DISN. Nevertheless,
the strategy used in Ladybird is not sufficiently generic as
the feature probably would have no intuitive meaning in the
situation where the symmetric points are non-visible or the
symmetry assumption does not hold.

As evidenced by DISN and Ladybird, the use of local im-
age features is effective. In this paper, we introduce spatial
pattern, a point-based geometric structure, to achieve better
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Figure 1. Illustration of the pipeline of spatial pattern guided kernel. (a) shows that each 3D point sampling (colored differently) of
the depicted shape is aligned to a 2D pixel by the given camera pose. Compared with a 2D convolution kernel (b) that only considers
neighbors located within a 2D regular local patch, the kernels in (d) derived from the proposed spatial patterns (c) explicitly exploit the
underlying geometric relations for each pixel. As a result, the kernels in (d) encode the local image features for capturing both image

contextual information and point geometry relations.

exploitation of local image features. The spatial pattern may
include geometric relationships, e.g., symmetric, co-planar,
and other structures that are less intuitive. With the spa-
tial pattern, a kernel operating in image space is derived to
encode local image features of 3D point samplings. Specifi-
cally, the pattern is formed by a fixed number of affinities
around a 3D sampling, for which the corresponding 2D pro-
jections are utilized as the operation positions of the kernel.
Although a traditional 2D convolution is possible to encode
contextual information for the central point, it ignores the
underlying geometric relations in original 3D space between
pixels and encounters the limitations brought by the regular
local area. A 2D deformable kernel (Dai et al., 2017) is able
to operate on irregular neighborhoods, but it is still not able
to explicitly consider the underlying 3D geometric relations,
which are important in 3D reconstruction tasks.

Figure 1 shows the pipeline of the 3D spatial pattern guided
2D kernel. As shown in Figure 1 (c-d), the kernels oper-
ate on points determined by spatial patterns for different
point samplings. Specifically, the proposed kernel finds
kernel points adaptively for each pixel, which consider its
geometric-related positions (e.g., symmetry locations) in
the underlying 3D space, rather than only relying upon the
appearance information. Furthermore, the spatial pattern is
devised to be deformable to enable the network to discover
more adaptive geometric relations for point samplings. In
the experiments section, we analyze the learned 3D spatial
pattern with visualization and statistics.

To demonstrate the effectiveness of spatial pattern guided
kernel, we integrate it into a network based on a deep im-
plicit network (Xu et al., 2019), and extensively evaluate our
model on the large collection of 3D shapes — the ShapeNet

Core dataset (Chang et al., 2015) and Pix3D dataset (Sun
etal., 2018). The experiments show that our method can pro-
duce state-of-the-art 3D shape reconstruction results from
single images compared to previous works. Ablation exper-
iments and analyses are conducted to show the performance
of different spatial pattern variants and the importance of
individual points within the spatial pattern.

In this work, we make the following contributions.

* We present spatial pattern to provide the network with
more flexibility to discover meaningful image features
that explicitly consider the geometric relationships.

* We extend 2D deformable convolutional kernel with
a 3D spatial pattern generator to discover meaningful
geometric structures while encoding image features.

2. Related Work

Deep Neural Networks for SVR. There has been a lot of
research on single image reconstruction task. Recent works
involve 3D representation learning, including points (Fan
et al., 2017; Lin et al., 2018; Mandikal et al., 2018), vox-
els (Choy et al., 2016; Wu et al., 2018; Xie et al., 2019),
meshes (Groueix et al., 2018; Wang et al., 2018; 2019;
Gkioxari et al., 2019) and primitives (Niu et al., 2018; Tang
et al., 2019; Wu et al., 2020). The representation can also
be learned without knowing the underlying ground truth 3D
shapes (Kato et al., 2018; Liu et al., 2019; 2020a; Yan et al.,
2016; Insafutdinov & Dosovitskiy, 2018; Lin et al., 2018).

In this line of research, AtlasNet (Groueix et al., 2018)
represents 3D shapes as the union of several surface ele-
ments that are generated from the learned multilayer percep-
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Figure 2. The overview of our method. Given an image, our network predicts the signed distance field (SDF) for the underlying 3D
object. To predict the SDF value for each point p, except for utilizing the global feature encoded from the image and the point feature
directly inferred from p, local image features are fully exploited. Particularly, the local feature of a 3D point is encoded with a kernel in
the image space whose kernel points are derived from a spatial pattern. *, © and & denote convolution, concatenation and sum operations

respectively.

trons (MLPs). Pixel2Mesh (Wang et al., 2018) generates
genus-zero shapes as the deformations of ellipsoid template
meshes. The mesh is progressively refined with higher reso-
lutions using a graph convolutional neural network condi-
tioned on the multi-scale image features. 3DN (Wang et al.,
2019) also deforms a template mesh to the target, trained
with a differentiable mesh sampling operator pushing sam-
pled points to the target position.

Implicit Neural Networks for SVR. The explicit 3D rep-
resentations are usually limited by fixed shape resolution or
topology. Alternatively, implicit functions for 3D objects
have shown the advantages at representing complicated ge-
ometry (Chen & Zhang, 2019; Xu et al., 2019; 2020; Li
& Zhang, 2020; Niemeyer et al., 2020; Liu et al., 2020bj;
Jiang et al., 2020; Saito et al., 2019). ImNet (Chen & Zhang,
2019) uses an MLP-based neural network to approximate
the signed distance field (SDF) of 3D shapes and shows
improved results in contrast to the explicit surface repre-
sentations. OccNet (Mescheder et al., 2019) generates an
implicit volumetric shape by inferring the probability of
each grid cell being occupied or not. The shape resolution
is refined by repeatedly subdividing the interest cells. While
those methods are capable of capturing the global shape
structure, the geometric details are usually missing. In addi-
tion to the holistic shape description, DISN (Xu et al., 2019)
adds a local image feature for each 3D point computed by
aligning the image to the 3D shape using an estimated cam-
era pose. With global and local features, DISN recovers
much better geometric details and outperforms state-of-the-
art methods. The local image feature of each 3D point
sampling can be further augmented with its self-symmetry
point in the situation of self-occlusion, as shown in Lady-
bird (Xu et al., 2020). Compared to Ladybird, we investigate
a more general point structure, the spatial pattern, along with
a deformable 2D kernel derived from the pattern, to encode
geometric relationships for local image features.

Deformable Convolutional Networks. Deformable con-
volution predicts a dynamic convolutional filter for each
feature position (Dai et al., 2017). Compared to locally con-
nected convolutions, deformable convolution enables the
exploration of non-local contextual information. The idea
was originally proposed for image processing and then ex-
tended for learning features from natural language (Thomas
et al., 2019), point cloud (Wu et al., 2019) and depth im-
ages (Park et al., 2020). In contrast to existing deformable
kernels, the proposed 2D deformable kernel is manipulated
by a 3D spatial pattern generator. The latter maps between
the 3D space and the 2D image plane, while the formers
work only within a single space.

3. Method

3.1. Overview

Given an RGB image of an object, our goal is to reconstruct
the complete 3D shape of the object with high-quality geo-
metric details. We use signed distance fields (SDF) to repre-
sent the 3D objects and approximate the SDFs with neural
network. Our network takes 3D points p = (x,y,2) € R3
and an image I as input and outputs the signed distance s at
each input location. With an SDF, the surface of an object
can be extracted as the isosurface of SDF(-) = 0 through
the Marching Cubes algorithm. In general, our network
consists of a fully convolutional image encoder m and a
continuous implicit function f represented as multi-layer
perceptrons (MLPs), from which the SDF is generated as

f(p, Fi(a),Fy) = 5,5 € R, (D

where a = m(p) is the 2D projection for p, F;(a) =
m(I(a)) is the local feature at image location a, and Fy rep-
resents the global image feature. Feature Fj(a) integrates
the multi-scale local image features from the feature maps
of m, from which the local image features are localized by
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Figure 3. Illustration of spatial pattern generator. For an input point
sampling, a pattern is initialized from n nearby points around it,
and the offsets of each surrounding points is predicted by an MLP
network. The final pattern is created as the sum of initial points
and the corresponding offsets.

aligning the 3D points to the image pixels via camera c.

By integrating with a spatial pattern at each 3D point sam-
pling, the feature Fj(a) of the sampling is modified by the
local image features of the pattern points. We devise a
feature encoding kernel A attaching to the image encoder
m to encode a new local image feature from the features
extracted from the image feature map. Then our model is
reformulated as

f(pah(Fl(a)7Fl<a1)7""E(an))7Fg) =S, (2)

where pixels a1, ...a,, are the 2D projections of the 3D points
p1, ..., Dn, belonging to the spatial pattern of the point sam-
pling p. The encoding kernel & is an MLP network that
fuses the local image features. n is the number of the pattern
points. Points py, ..., p, are generated by a spatial pattern
generator which is addressed in the following subsection.

In general, our pipeline is designed to achieve better ex-
ploitation of contextual information from local image fea-
tures extracted according to the predicted 3D spatial patterns,
resulting in geometry-sensitive image feature descriptions
for 3D point samplings, ultimately improve the 3D recon-
struction from single-view images. A schematic illustration
of the proposed model is given in Figure 2.

3.2. Spatial Pattern Generator

Our spatial pattern generator takes as input a 3D point sam-
pling p, and outputs n 3D coordinates, i.e., p, ..., p,. Like
previous deformable convolution networks (Dai et al., 2017),
the position of a pattern point is computed as the sum of the
initial location and a predicted offset. A schematic illustra-
tion of the spatial pattern generator is shown in Figure 3.

With proper initialization, the pattern can be learned effi-
ciently and is highly effective for geometric reasoning.
3.2.1. INITIALIZATION.

We consider two different sampling methods for spatial
pattern initialization, i.e, uniform and non-uniform 3D point
samplings. For simplicity, the input shapes are normalized
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(1) Non-Uniform Initialization ~ (II') Uniform Initialization
Figure 4. Examples of spatial pattern initialization obtained by
non-uniform sampling (I) and uniform sampling (II) strategies. In
(1), a non-uniform pattern is formed by 3D points (in black) that
are symmetry to input point p along z,y, z axis and zy, yz, rz
planes; and in (II), an uniform pattern is created by 3D points ling
at centers of the side faces of a cube centered at point p.

to a unified cube centered at the origin. For uniform pattern,
we uniformly sample n points from a cube centered at point
p = (z,y,z) with edge length of {. For example, we set
n = 6 and [ = 0.2, then the pattern points p; can be drawn
from the combinations of p; = (x 0.1,y £ 0.1,z + 0.1),
such that the pattern points lie at the center of the six side
faces of the cube.

Unlike the uniform sampling method, the non-uniform sam-
pling method does not have a commonly used strategy, ex-
cept for random sampling. Randomly sampled points always
do not have intuitive geometric meaning and are hardly ap-
peared in any kernel point selection methods. As to capture
non-local geometric relations, we design pattern points as
the symmetry points of p along global axes or planes that
go through the origin of the 3D coordinate frame. Since the
shape is normalized and centered at the origin, the symme-
try points also lie within the 3D shape space. Similarly, we
let n = 6, and we use z, y, 2z axes and xy, yz, xz planes to
compute the symmetry points, then the pattern points p; can
be drawn from the combinations of p; = (+x, +y, +2).

The two different types of spatial pattern initialization are
shown in Figure 4. After initialization, the pattern points,
along with input sampling, are passed to an MLP network
to generate the offset of each pattern point, and the final
pattern is the sum of the initial pattern positions and the
predicted offsets.

Loss Function. Given a collection of 3D shapes and the
generated implicit fields from images Z, the loss is defined
with L; distance:

Lspr =Y Y wlf(p,F/,F)) = SDF'(p)|, ()

1€ p

where SDF! denotes the ground truth SDF value corre-
sponding to image I and f(-) is the predicted field. w is set
to wy, if SDF!(p) < 6, and wy, otherwise.
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4. Experiments

In this section, we show qualitative and quantitative results
on single-view 3D reconstruction from our method, and
comparisons with state-of-the-art methods. We also conduct
a study on the variants of spatial patterns with quantitative
results. To understand the effectiveness of the points in the
spatial pattern, we provide an analysis of the learned spatial
pattern with visualization and statistics.

Implementation Details. We use DISN (Xu et al., 2019)
as our backbone network, which consists of a VGG-style
fully convolutional neural network as the image encoder and
multi-layer perceptrons (MLPs) to represent the implicit
function. Our spatial pattern generator and local feature
aggregation kernel are based on MLPs. The parameters of
our loss function in Equation 3 are setto w; = 4, ws = 1,
and 6 = 0.01.

Dataset and Training Details. We use the ShapeNet
Core dataset (Chang et al., 2015) and Pix3D dataset (Sun
et al., 2018) for evaluation. The proposed model is trained
across all categories. In testing, for the ShapeNet dataset,
the camera parameters are estimated from the input images,
and we use the trained camera model from DISN (Xu et al.,
2019) for fair comparisons. For the Pix3D dataset, ground
truth camera parameters and image masks are used.

Evaluation Metrics. The quantitative results are obtained
by computing the similarity between generated surfaces and
ground truth surfaces. We use the standard metrics including
Chamfer Distance (CD), Earth Mover’s Distance (EMD),
and Intersection over Union (IoU).

Please refer to the supplemental materials for more details
on data processing, network architecture, training proce-
dures, and spatial pattern computation.

4.1. Quantitative and Qualitative Evaluations
4.1.1. IMPACT OF SPATIAL PATTERN CONFIGURATION.

To figure out the influence of different spatial patterns, we
designed several variants of the pattern. Specifically, two
factors are considered, including the initialization and the
capacity, i.e., the pattern point sampling strategy and the
number of the points in a pattern. As described before, we
considers non-uniform and uniform sampling methods for
pattern initialization and set the number of points to three to
six for changing the capacity. The methods derived from the
combinations of the aforementioned two factors are denoted
as

* OurSyn;form—6p, in Which six points are uniformly
sampled on a cube [ centered at point sampling.

* Ours,on—uniform—6p, In Which six points are non-
uniformly sampled at the symmetry locations in the
shape space along zy, yz and xz planes and x, y and z
axes.

* Ours,on—uniform—3p> in Which three points are non-
uniformly sampled at the symmetry locations in the
shape space along xy, yz and xz planes.

In Table 1, we report the numerical results of the
methods using ground truth camera pose. In general,
Ours,,on—uniform—6p achieves best performance. By re-
ducing the capacity to the number of three points, the perfor-
mance decreases, as shown by Ours,, o, —uni form—3p. This
indicates that some critical points in Ours,on—uni form—6p
that have high responses to the query point do not ap-
pear in Ours,on—uni form—3p- Notably, the sampling strat-
egy is more important. Both Ours,on—uniform—6p and
Oursnon—uniform—Sp OUtPel'fOI'mS Oursuniform—ﬁp with
large margins. Thus, initialization with non-uniform sam-
pling makes the learning of effective spatial patterns eas-
ier. This implies that optimizing the pattern position in the
continuous 3D space is challenging, and with proper initial-
ization, the spatial pattern can be learned more efficiently.
To better understand the learned spatial pattern and which
pattern points are preferred by the network, we provide
analysis with visualization and statistics in the next section.
Before that, we evaluate the performance of our method by
comparing it with several state-of-the-art methods. Specifi-
cally, we use Ours,,on,—uniform—6p as our final method for
comparison.

4.1.2. COMPARISON WITH VARIOUS METHODS.

We compare our method with the state-of-the-art methods
on the single-image 3D reconstruction task. All the methods,
including OccNet (Mescheder et al., 2019), DISN (Xu et al.,
2019), Ladybird (Xu et al., 2020), are trained across all 13
categories. The method of Ours uses ground truth cameras
while Ours,,,,, denotes the version of Ours using estimated
camera poses.

A quantitative evaluation on the ShapeNet dataset is reported
in Table 8 in terms of CD, EMD, and IOU. CD and EMD are
evaluated on the sampling points from the generated triangu-
lated mesh. IOU is computed on the solid voxelization of the
mesh. In general, our method outperforms other methods.
Particularly, among the methods including DISN, Ladybird,
and Ours, which share a similar backbone network, Ours
achieves much better performance.

In Figure 9, we show qualitative results generated by Mesh
R-CNN (Gkioxari et al., 2019), OccNet (Mescheder et al.,
2019), DISN (Xu et al., 2019) and Ladybird (Xu et al.,
2020). We use the pre-trained models from the Mesh R-
CNN, OccNet, and DISN. For Ladybird, we re-implement
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Metrics|Methods plane bench cabinet car chair display lamp speaker rifle sofa table phone watercraft|mean
OurSuniform—ép 372 373 7.09 393 459 478 777 9.19 2.02 4.64 6.71 3.62 4.17 |5.07
CDJ) |Oursnon—wuniform—ep| 3.27 3.38 6.88 393 440 540 6.77 848 1.58 438 6.49 4.02 4.01 4.85
Ourspon—uniform—3p| 3.33 3.51 6.88 3.87 438 4.58 722 876 3.004.45 6.66 3.63 4.11 4.95
OurSuniform—ép 207 202 260 238 219 211 286 285 1.552.16 241 1.78 2.01 2.23
EMD, |Oursnon—uniform—s6p| 1.91 1.90 258 236 2.17 2.08 2.66 275 1.522.11 2.36 1.77 1.99 |2.17
Ours,on—uniform—3p| 1.96 1.94 258 235 2.16 2.07 281 281 158 2.13 239 1.78 200 |220
OurSuniform—ép 66.1 59.5 59.6 80.0 658 66.7 538 637 747 74.1 60.8 79.6 68.0 |67.1
IOUT |Oursnon—uniform—s6p| 682 63.1 614 80.7 66.8 67.9 559 650 750752 62.6 81.0 68.9 | 68.6
Ourspon—uniform—3p| 67.4 62.0 60.5 80.5 66.8 67.5 54.1 642 73.6 75.1 61.8 80.2 68.7 679

Table 1. Quantitative results of the variants of our method using different configurations of spatial pattern. Metrics include CD (multiply
by 1000, the smaller the better), EMD (multiply by 100, the smaller the better), and IoU (%, the larger the better). CD and EMD are

computed on 2048 points.

Metrics | Methods plane bench cabinet car chair display lamp speaker rifle sofa table phone watercraft| mean
Pixel2Mesh | 6.10 6.20 12.11 13.45 11.13 6.39 31.41 14.52 4.51 6.54 15.61 6.04 12.66 |11.28
OccNet 770 643 936 526 7.67 754 2646 1730 4.86 6.72 10.57 7.17 9.09 9.70

CD| DISN. 996 898 10.19 539 7.71 1023 2576 1790 5.58 9.16 13.59 6.40 1191 |10.98
Ladybird 585 6.12 9.10 5.13 7.08 823 2146 1475 5.53 6.78 9.97 5.06 6.71 8.60
Ourscam 540 559 843 501 6.17 854 1496 14.07 3.82 6.70 8.97 542 6.19 7.64
Ours 327 338 688 393 440 540 677 848 1.58 438 649 4.02 4.01 4.85
Pixel2Mesh | 298 2.58 344 343 352 292 515 356 3.04 270 352 2.66 3.94 3.34
OccNet 275 243 305 256 270 258 396 346 227 235 2.83 227 2.57 2.75

EMD, DISN. 267 248 3.04 267 267 273 438 347 230 2.62 3.11 2.06 2.77 2.84
Ladybird 248 229 3.03 265 260 261 420 332 222242 282 206 2.46 2.71
Ourscam 235 215 290 266 249 249 359 320 2.04 240 2.70 2.05 2.40 2.57
Ours 191 190 258 236 217 208 266 275 152 211 236 1.77 1.99 2.17
Pixel2Mesh | 51.5 40.7 434 50.1 402 559 29.1 523 509 60.0 312 694 40.1 47.3
OccNet 547 452 732 73.1 502 479 370 653 458 67.1 50.6 70.9 52.1 56.4

10Ut DISN 57,5 529 523 743 543 564 347 549 592 659 479 729 559 57.0
Ladybird 60.0 534 508 745 553 578 362 556 61.0 685 48.6 73.6 61.3 58.2
Ourscam 60.6 544 529 747 560 592 383 56.1 629 68.8 493 74.7 60.6 59.1
Ours 682 63.1 614 80.7 668 679 559 650 750 752 626 81.0 68.9 68.6

Table 2. Quantitative results on the ShapeNet Core dataset for various methods.

their network and carry out training according to the specifi-
cations in their paper. All the methods are able to capture
the general structure of the shapes, shapes generated from
DISN, Ladybird and Ours are more aligned with the ground
truth shapes. Specifically, our method is visually better at
the non-visible regions and fine geometric variations.

CD(x1000)J EMD(x100)J 10U(%)1

Ladybird | Ours | Ladybird | Ours | Ladybird | Ours
bed 9.84 8.76 280 270 70.7 |73.2
bookcase | 10.94 |14.70| 2.91 332 | 443 (418
chair 14.05 | 9.81 282 |272| 573 |573
desk 18.87 |15.38| 3.18 |291| 512 |60.7
misc 36.77 3094 | 445 4.00 | 29.8 |44.0
sofa 4.56 3.77 202 [192| 86.7 |87.6
table 21.66 |14.04| 296 |2.78| 569 |588
tool 778 1624 370 |3.57| 413 |382
wardrobe |  4.80 5.60 192 |2.01 875 | 875
mean 1436 |1325] 297 |288] 584 |61.0

Table 3. Quantitative results on Pix3D dataset.

The quantitative evaluation of the Pix3D dataset is provided
in Table 3. Both Ours and Ladybird are trained and evalu-
ated on the same train/test split, during which ground truth
camera poses and masks are used. Specifically, 80% of the
images are randomly sampled from the dataset for training
while the rest images are used for testing. In general, our
method outperforms Ladybird on the used metrics.

In addition to the quantitative results, we also show the re-
constructed shapes in Figure 5. Compared to the synthetic
images from the ShapeNet dataset, the real images are more
diverse in terms of camera views, object sizes, and appear-
ances. Our reconstruct shapes are visually more plausible
compared to Ladybird.

4.2. Analysis of Learned Spatial Patterns

We have demonstrated the effectiveness of the proposed
spatial pattern via achieving better performance than other
alternatives, and the experiments on different variants of
the spatial pattern show the influence of initialization and
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Figure 5. Qualitative Results on the Pix3D dataset. Ground truth
image masks and camera parameters are used.

Figure 6. Visualization of learned spatial patterns in image plane.

capacity. To better understand the importance of individ-
ual pattern points, we visualize several learned patterns in
Figure 6&7 and calculate the mean offsets of the predicted
pattern points visualized in Figure 8.

In Figure 6, we show learned spatial patterns in the 2D
image plane. In each row, a spatial pattern is shown in
six different images with different views. This implies an
explicit constraint of view consistency on image encoding.

Pattern points (colored in red) that have intuitive geometric
relationships (e.g., symmetric and co-planar) with the query
points (colored in green) are highlighted by cyan circles
in Figure 6. Figure 7 provides a better visualization in 3D
frame, from which we can see that some learned pattern
points from the non-uniform initialization are almost sta-
tionary, e.g., points p1, p2 and pg that are highlighted by
dash circles. Also, as shown in Figure 8, the mean offsets
of points p1, p2 and pg are close to zero. To figure out the
importance of these stationary pattern points, we train the
network using the points p1, p2, and pg as a spatial pattern
and keep their positions fixed during training. As shown
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Figure 7. Visualization of spatial pattern points with different
shapes and colors. From the examples in (I) and (II), the learned
pattern points (i.e., pink cones) from the non-uniform initializa-
tion (i.e., pink balls) are relative stationary, while points (i.e., blue
cones) learned from uniform initialization (i.e., blue balls) have
much larger deviations from their original positions. Some station-
ary points p1, p2 and pe are highlighted in dash circles.
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Figure 8. Statistics on the offsets of spatial pattern points. The
offset of individual pattern point is computed as the mean distance
between the initial and predicted position. Among all points,
p1, p2 and ps have smallest learned offsets from the non-uniform
initialization (i.e., pink bars), while for uniform initialization (i.e.,
blue bars), all the predicted points have much larger deviations
from their original locations.

in Table 4, the performance of the selected rigid pattern
is better than Oursnon—u’n,ifo’r'm—3p and Oursunifm'm—ﬁp
and slightly lower than Ours,, o, —yni form—6p- Lhis reveals
that the pattern points discovered by the network are useful,
which finally lead to a better reconstruction of the underly-
ing geometry.

Even though consuming more time and memory, utilizing
the auxiliary contextual information brought by other points
D3, P4, and ps only achieve slight improvement on the per-
formance. The analysis shows that naive selection of more
neighboring points is not as effective as the strategy that
considers the underlying geometric relationships. Although
there is no explicit constraint to guarantee the geometric re-
lations exactly, statistically we found that the network tends
to shift the pattern points towards the locations that have
geometric relations with the query point, as shown in 7&8.
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plane bench cabinet car chair display lamp speaker rifle sofa table phone watercraft | mean
CD(x1000) | 338 344  7.06 387 450 457 730 898 1.66 453 6.61 345 4.17 4.89
EMD(x100) | 1.97 192 258 237 216 2.07 277 282 152 212 235 1.80 2.01 2.19
I0U(%) 674 628 60.5 80.5 666 674 549 645 749 750 625 80.1 68.5 68.1

Table 4. Quantitative results of a rigid spatial pattern formed by three pattern points selected from the stationary points of the learned

spatial pattern.
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Figure 9. Qualitative comparison results for various methods.

It further proves that encoding geometric relationships with
the 2D kernel derived by the proposed spatial pattern is
effective for the single-image 3D reconstruction task.

5. Conclusion

In this paper, we propose a new feature encoding scheme
working on deep implicit field regression models for the task
of 3D shape reconstruction from single images. We present
spatial pattern, from which a kernel operating in image space
is derived to better encode local image features of 3D point
samplings. Using spatial pattern enables the 2D kernel point
selection explicitly to consider the underlying 3D geometry

relations, which are essential in 3D reconstruction task,

while traditional 2D kernels mainly consider the appearance
information. To better understand the spatial pattern, we

study several variants of spatial pattern designs in regard to
the pattern capacity and the way of initialization, and we
analyze the importance of individual pattern points. Results
on large synthetic and real datasets show the superiority of
the proposed method on widely used metrics.

A key limitation is that the model is sensitive to camera pa-
rameters. As shown in Table 8, when camera parameters are
exactly correct, the performance is significantly improved.
One possible direction to investigate is to incorporate the
camera estimation process in the loop of 3D reconstruc-
tion pipeline, such as jointly optimize the camera pose and
the implicit field within a framework with multiple objec-
tives. Another interesting direction is to learn geometric
relations with explicit geometric constraints. Restricting
the optimization to an optimized subspace could potentially
promote performance and interpretation of learned patterns.
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6. Appendix
6.1. Data Processing
6.1.1. DATASETS.

The ShapeNet Core dataset (Chang et al., 2015) includes 13
object categories, and for each object, 24 views are rendered
with resolution of 137x 137 as in (Choy et al., 2016). Pix3D
Dataset (Sun et al., 2018) contains 9 object categories with
real-world images and the exact mask images. The number
of views and the image resolution varies from different
shapes.We process all the shapes and images in the same
format for the two datasets. Specifically, all shapes are
normalized to the range of [-1,1] and all images are scaled
to the resolution of 137x137.

6.1.2. 3D POINT SAMPLING.

For each shape, 2048 points are sampled for training. We
firstly normalize the shapes to a unified cube with their cen-
ters of mass at the origin. Then we uniformly sample 2563
grid points from the cube and compute the sign distance field
(SDF) values for all the grid samples. Following the sam-
pling process of Ladybird (Xu et al., 2020), the 2562 points
are downsampled with two stages. In the first stage, 32,768
points are randomly sampled from the four SDF ranges [-
0.10,-0.03], [-0.03,0.00], [0.00,0.03], and [0.03,0.10], with
the same probabilities. In the second stage, 2048 points are
uniformly sampled from the 32,768 points using the farthest
points sampling strategy.

In testing, 652 grid points are sampled are fed to the network,
and output the SDF values. The object mesh is extracted as
the zero iso-surface of the generated SDF using the March-
ing Cube algorithm.

6.1.3. 3D-T0O-2D CAMERA PROJECTION.

The pixel coordinate a of a 3D point sampling p is com-
puted as two stages. Firstly, the point is converted from the
world coordinate system to the local camera coordinate sys-
tem ¢ based on the rigid transformation matrix A€, such that
p¢ = A°p. Then in the camera space, point p® = (x¢, y¢, z)
is projected to the 2D canvas via perspective transformation,
ie., w(p°) = (ﬁ—z, g—:) The projected pixel whose coordi-
nate lies out of an image will reset to 0 or 136 (the input
image resolution is fixed as 137x137 in our experiment).

We show the data processing workflow with an example
from the Pix3D dataset in Figure 10. For the ShapeNet
dataset, the images are already satisfied.

6.2. Spatial Pattern Computation

For a 3D point sampling p = (z,y, z), the pattern points
of p are drawn from p; = (v +1/2,y £1/2,z +1/2)

\_ Input Image and Mask
s

Camera Projection

Input 3D Object 3D Point Samplings

Figure 10. The data processing workflow, including 3D point sam-
pling, image preparation and 3D-to-2D camera projection.

when using the uniform initialization, and are computed
by p; = (£, £y, £2) if adopting the non-uniform initial-
ization, where ¢ is the point index, such that? = 1, ..., n, and
n is the number of pattern points. Specifically, the spatial
patterns for the variants of our methods are computed as
follows

* For Oursyn; form—6p, the pattern configuration parame-
ters are set to n = 6 and [ = 0.2, and the pattern points
are py = (x,y,2+0.1), p2 = (z + 0.1,y,2), p3 =
(z,y+0.1,2), ps = (z,y,2—0.1),p5 = (x—0.1,y, 2),
and pg = (z,y — 0.1, 2).

* For Ours,,on—uni form—6p, the pattern configuration pa-
rameters are set to n = 6, and the pattern points are
p1 = (x,y, 72)7 P2 = (71'7%2)’ b3 = (:L'a —y,z),
pa = (—2,-y,2), p5 = (v,—y,—2), and psg =
(—,’E7 Y, _Z)'

* For Ours,on—uniform—3p, the pattern configuration
parameters are set to n = 3, and the pattern points
are p1 = (x,y,—2), p2 = (—2,y,2), and p3 =
(:L’, Y, Z)

As introduced in the analysis section, the rigid spatial pattern
formed by the selected stationary points uses points p1, ps
and pg from the pattern points of Ours,on—wuni form—6p-

6.3. Network and Training Details
6.3.1. TRANING POLICY.

We implement our method based on the framework of Py-
torch. For training on the ShapeNet dataset, we use the
Adam optimizer with a learning rate 1e-4, a decay rate of
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0.9, and a decay step size of 5 epochs. The network was
trained for 30 epochs with batch size 20. For training on
the Pix3D dataset, we use the Adam optimizer with a con-
stant learning rate le-4, and smaller batch size 5. For the
ShapeNet dataset, at each epoch, we randomly sample a sub-
set of images from each category. Specifically, a maximum
number of 36000 images are sampled for each category. The
total number of images in an epoch is 411,384 resulting in
20,570 iterations. Our model is trained across all categories.

6.3.2. NETWORK ARCHITECTURE.

We introduce the details of the image encoder m, spatial
pattern generator g, feature aggregation module A, and the
SDF regression network f in our paper.

We use the convolution network of VGG-16 as our im-
age encoder, which generates multi-resolution feature maps.
Similar to DISN (Xu et al., 2019), we reshape the feature
maps to the original image size with bilinear interpolation
and collect the local image features of a pixel from all scales
of feature maps. Specifically, the local feature contains six
sub-features from the six feature maps, with the dimension
of {64, 128, 256, 512, 512, 512} respectively.

Spatial Pattern Generator g
Input 1 + n 3-dim points
— output n 3-dim points

Operation Output Shape
Conv1D+ReLLU (64,)
Conv1D+ReLU (256,)
ConvlD+ReLU (512,)

Concat({1 4 n features}) | ((1+n) x 512,)
ConvID+ReLLU (512,)
ConvlD+ReLLU (256,)
Conv1D+Tanh (n x3,)

Table 5. Spatial Pattern Generator.

The spatial pattern generator receives n + 1 local image
features from a point sampling and an initial spatial pattern
belonging to it. All the points are firstly promoted from
R3 to the dimension of 512 using a multi-layer perceptron
(MLP). Then all the point features are concatenated and
passed to another MLP to output a vector with the dimension
of n x 3 resulting in n 3D offset positions. The final pattern
is the sum of the initial pattern and the predicted offsets.

Feature Aggregation Module h
Input 1 + n D-dim feature vectors
— output a D-dim feature vector

Operation Output Shape
Concat({1 + n features}) | ((1+n) x D,)
Conv1D+ReLLU (D,)

Table 6. Feature Aggregation Module.

The feature modulation network is attaching to the image
encoder from which receives local image features and pro-

Signed Distance Function f
Input a 3-dim point and a S-dim feature vector F,,
— output a 1-dim scalar

Operation Output Shape
Conv1D+ReLLU 64,)
Conv1D+ReLU (256,)
Conv1D+RelLU (512,), denoted as Py
Concat(F,,Py) (S+512,)
ConvlD+ReLU (512,)
Conv1D+ReLLU (256,)
ConvlD+ReLLU (1,)

Table 7. Signed Distance Function.

duces a new local image feature. Since the local image
feature contains six sub-features, we devise six aggregation
modules. Without losing generality, we set the dimension
of the sub-feature to D.

The SDF regression network f contains two MLPs, a global
MLP receiving global image feature and a local MLP ac-
cepting local image feature. Without losing generality, we
introduce a network with input a feature of dimension S.
The 3D coordinate is firstly promoting to a 512-dim point
feature by three fully connected layers. Then the point fea-
ture Py and input feature F), are concatenated and passed
to another three fully connected layers to generate the SDF
value. The SDF value from global MLP and local MLP are
added together as final output.

7. More results

More Quantitative Results. We includes more state-of-
the-art methods on the single-image 3D reconstruction task.
All the methods, including AtlasNet (Groueix et al., 2018),
Pixel2Mesh (Wang et al., 2018), 3DN (Wang et al., 2019),
ImNet (Chen & Zhang, 2019), 3DCNN (Xu et al., 2019),
OccNet (Mescheder et al., 2019), DISN (Xu et al., 2019)
and Ladybird (Xu et al., 2020).

More Ablation Study. Our network degenerates to DISN
when the spatial pattern and its associated network modules
are removed. To reduce the impact of network capacity, we
train a variant with a network structure similar to Ours. To
avoid introducing a point structure or geometric relation, we
duplicate the input point to create a trivial pattern and feed
it into the network. Numerical results on the Pix3D dataset
prove the effectiveness of the spatial pattern.

CD| |[EMD/|IOU?t
Ours w/o s. p.[15.02| 3.20 | 58.2
Ours 13.25] 2.88 [ 61.0
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Metrics | Methods plane bench cabinet car chair display lamp speaker rifle sofa table phone watercraft | mean
AtlasNet 598 698 1376 17.04 13.21 7.18 3821 1596 459 829 18.08 6.35 15.85 |13.19
Pixel2Mesh| 6.10 6.20 12.11 13.45 11.13 6.39 3141 1452 451 6.54 15.61 6.04 12.66 |11.28
3DN 6.75 796 834 7.09 17.53 835 12.79 17.28 3.26 827 14.05 5.18 1020 | 9.77
IMNET 12.65 15.10 1139 8.86 11.27 13.77 63.84 21.83 8.73 10.30 17.82 7.06 13.25 |16.61

CD| 3DCNN 10.47 1094 1040 5.26 11.15 11.78 3597 1797 6.80 9.76 1335 6.30 9.80 [12.30
OccNet 770 6.43 936 526 7.67 754 2646 17.30 4.86 6.72 10.57 7.17 9.09 9.70
DISN 996 898 10.19 539 7.71 1023 2576 17.90 5.58 9.16 13.59 6.40 1191 |10.98
Ladybird 585 6.2 9.0 513 7.08 823 2146 1475 553 6.78 997 5.06 6.71 8.60
Ourscam 540 559 843 501 6.17 854 1496 14.07 3.82 670 897 542 6.19 7.64
Ours 327 338 688 393 440 540 6.77 848 158 438 649 4.02 4.01 4.85
AtlasNet 339 322 336 372 386 312 529 375 335 314 398 3.19 4.39 3.67
Pixel2Mesh | 298 2.58 344 343 352 292 515 356 3.04 270 352 266 3.94 3.34
3DN 330 298 321 328 445 391 399 447 278 331 394 270 3.92 3.56
IMNET 290 280 3.14 273 301 281 585 380 265 271 339 214 275 3.13

EMD, 3DCNN 336 290 306 252 301 285 473 335 271 2.60 3.09 2.10 2.67 3.00
OccNet 275 243 3.05 256 270 258 396 346 227 235 283 227 2.57 2.75
DISN 267 248 3.04 267 267 273 438 347 230 2.62 3.11 2.06 2.77 2.84
Ladybird 248 229 3.03 265 260 261 420 332 222 242 282 206 2.46 2.71
Ourscam 235 215 290 266 249 249 359 320 2.04 240 270 2.05 2.40 2.57
Ours 191 190 258 236 217 2.08 266 275 152 211 236 1.77 1.99 2.17
AtlasNet 392 342 207 220 257 364 213 232 453 279 233 425 28.1 30.0
Pixel2Mesh| 51.5 40.7 434 50.1 402 559 291 523 509 600 312 694 40.1 473
3DN 543 398 494 594 344 472 354 453 576 60.7 313 714 46.4 48.7
IMNET 554 495 515 745 522 562 296 526 523 64.1 450 709 56.6 54.6

10U} 3DCNN 506 443 523 769 526 515 362 580 505 672 503 709 57.4 55.3
OccNet 547 452 732 731 502 479 370 653 458 67.1 50.6 709 52.1 56.4
DISN 575 529 523 743 543 564 347 549 592 659 479 729 55.9 57.0
Ladybird 60.0 534 50.8 745 553 578 362 556 61.0 685 48.6 73.6 61.3 58.2
Ourscam 60.6 544 529 747 560 592 383 561 629 68.8 493 74.7 60.6 59.1
Ours 682 63.1 614 807 668 679 559 650 750 752 62.6 81.0 68.9 68.6

Table 8. Quantitative results on the ShapeNet Core dataset for various methods.



