Skip to main content

Neural Video: A Novel Framework for Interpreting the Spatiotemporal Activities of the Human Brain

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14359))

Included in the following conference series:

  • 223 Accesses

Abstract

Deep learning has become a powerful tool for brain image analysis. However, high dimensionality hinders the direct application of deep learning models to 4D functional magnetic resonance imaging (fMRI) data of the brain. Previous methods usually simplified fMRI data with Regions-Of-Interest (ROI) based methods, which may lead to information loss. To address this issue, we proposed a novel framework that converts 4D fMRI data into 3D “neural video” based on area-preserving geometry mapping. In detail, 3D cortical surface mesh constructed with FreeSurfer could be converted into 2D planar mesh by using area-preserving geometry mapping, and then each fMRI volume could be aligned to the 2D planar mesh and then converted into a 2D image. Thus, a 4D fMRI scan could be converted into a 3D neural video. We further constructed CNN+Transformer models to process the converted neural video. We evaluated the framework with gender (females vs. males) and brain age (22–25 years vs. 31–35 years) classification tasks using data from the S1200 data release of the Human Connectome Project (HCP). The classification accuracy are 0.8811 ± 0.0254, 0.8612 ± 0.0199 and 0.8996 ± 0.0278 for the left hemisphere, right hemisphere and whole brain in gender classification as well as 0.5996 ± 0.0396, 0.6369 ± 0.0387 and 0.6479 ± 0.0453 in brain age classification. The results suggest that the proposed framework may provide a new avenue for deep learning of 4D spatiotemporal data such as brain fMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6836–6846 (2021)

    Google Scholar 

  2. Arslan, S., Ktena, S.I., Glocker, B., Rueckert, D.: Graph saliency maps through spectral convolutional networks: application to sex classification with brain connectivity. In: Stoyanov, D., et al. (eds.) GRAIL/Beyond MIC -2018. LNCS, vol. 11044, pp. 3–13. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00689-1_1

    Chapter  Google Scholar 

  3. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  4. Fan, L., Su, J., Qin, J., Hu, D., Shen, H.: A deep network model on dynamic functional connectivity with applications to gender classification and intelligence prediction. Front. Neurosci. 14, 881 (2020)

    Article  Google Scholar 

  5. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  6. Gao, K., et al.: Deep transfer learning for cerebral cortex using area-preserving geometry mapping. Cereb. Cortex 32(14), 2972–2984 (2022)

    Article  Google Scholar 

  7. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Heeger, D.J., Ress, D.: What does fMRI tell us about neuronal activity? Nat. Rev. Neurosci. 3(2), 142–151 (2002)

    Article  Google Scholar 

  10. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM computing surveys (CSUR) 54(10s), 1–41 (2022)

    Article  Google Scholar 

  11. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453(7197), 869–878 (2008). https://doi.org/10.1038/nature06976

    Article  Google Scholar 

  12. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  13. Qin, J., et al.: Predicting individual brain maturity using dynamic functional connectivity. Front. Hum. Neurosci. 9, 418 (2015)

    Article  Google Scholar 

  14. Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22(1), 158–165 (2012)

    Article  Google Scholar 

  15. Su, Z., Zeng, W., Shi, R., Wang, Y., Sun, J., Gu, X.: Area preserving brain mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2235–2242 (2013)

    Google Scholar 

  16. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Google Scholar 

  17. Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems. vol. 30 (2017)

    Google Scholar 

  19. Wightman, R.: Pytorch image models. https://github.com/rwightman/pytorch-image-models (2019). https://doi.org/10.5281/zenodo.4414861

  20. Zeng, L.-L., et al.: A deep transfer learning framework for 3D brain imaging based on optimal mass transport. In: Kia, S.M., et al. (eds.) MLCN/RNO-AI -2020. LNCS, vol. 12449, pp. 169–176. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66843-3_17

    Chapter  Google Scholar 

  21. Zhang, C., Cahill, N.D., Arbabshirani, M.R., White, T., Baum, S.A., Michael, A.M.: Sex and age effects of functional connectivity in early adulthood. Brain Connectivity 6(9), 700–713 (2016)

    Article  Google Scholar 

  22. Zhang, C., Dougherty, C.C., Baum, S.A., White, T., Michael, A.M.: Functional connectivity predicts gender: evidence for gender differences in resting brain connectivity. Hum. Brain Mapp. 39(4), 1765–1776 (2018)

    Article  Google Scholar 

  23. Zhao, X., et al.: Area-preservation mapping using optimal mass transport. IEEE Trans. Visual Comput. Graphics 19(12), 2838–2847 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the STI 2030-Major Projects (2022ZD0208903), the National Natural Science Foundation of China (62036013, 61722313, and 62006239), the Fok Ying Tung Education Foundation (161057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Li Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J. et al. (2023). Neural Video: A Novel Framework for Interpreting the Spatiotemporal Activities of the Human Brain. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14359. Springer, Cham. https://doi.org/10.1007/978-3-031-46317-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46317-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46316-7

  • Online ISBN: 978-3-031-46317-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics