Skip to main content

Pixel-Correlation-Based Scar Screening in Hypertrophic Myocardium

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14359))

Included in the following conference series:

  • 228 Accesses

Abstract

The screening of myocardial scars in patients with hypertrophic cardiomyopathy(HCM) using cine magnetic resonance images(Cine-MRI) is critical in clinical practice. To tackle this task, we propose a locally-attentive pixel-correlation learning model. In such model, we first divide the image into different patches. Then, we employ a multi-layer perceptron to extract the scar features by modelling the correlation between pixels within each patch, as well as the correlation between pixels of different patches. To further enhance representation capability of the learned features, we incorporates an intra-attention mechanism to focus the pixels within the patches, and an inter-attention mechanism to focus the different the patches. After that, these learned deep features are combined with radiomics features and integrated into a linear classifier. The validation on clinical data shows powerful performance of our model, with accuracy, sensitivity, specificity, positive predictive value(PPV), negative predictive value(NPV), f1-score and area under the curve (AUC) values of 82.9%, 98.4%, 50.0%, 82.7%, 85.7%, 89.9% and 0.867, respectively. Our method has yielded promising experimental results, indicating that it can serve as a valuable tool for clinical physicians to screen scars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maron, B.J., Casey, S.A., Poliac, L.C., Gohman, T.E., Almquist, A.K., Aeppli, D.M.: Clinical course of hypertrophic cardiomyopathy in a regional united states cohort. JAMA 281(7), 650–655 (1999)

    Article  Google Scholar 

  2. Semsarian, C., Ingles, J., Maron, M.S., Maron, B.J.: New perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 65(12), 1249–1254 (2015)

    Article  Google Scholar 

  3. Maron, B.J., et al.: Hypertrophic cardiomyopathy in children, adolescents, and young adults associated with low cardiovascular mortality with contemporary management strategies. Circulation 133(1), 62–73 (2016)

    Article  Google Scholar 

  4. Monserrat, L., Elliott, P.M., Gimeno, J.R., Sharma, S., Penas-Lado, M., McKenna, W.J.: Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: an independent marker of sudden death risk in young patients. J. Am. Coll. Cardiol. 42(5), 873–879 (2003)

    Article  Google Scholar 

  5. Bruder, O., et al.: Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 56(11), 875–887 (2010)

    Article  Google Scholar 

  6. Kim, R.J., et al.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19), 1992–2002 (1999)

    Article  Google Scholar 

  7. Gulati, A., et al.: Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 309(9), 896–908 (2013)

    Article  Google Scholar 

  8. Schelbert, E.B., Fonarow, G.C., Bonow, R.O., Butler, J., Gheorghiade, M.: Therapeutic targets in heart failure: refocusing on the myocardial interstitium. J. Am. Coll. Cardiol. 63(21), 2188–2198 (2014)

    Article  Google Scholar 

  9. Kanda, T., et al.: Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276(1), 228–232 (2015)

    Article  Google Scholar 

  10. Ramalho, J., et al.: High signal intensity in Globus pallidus and dentate nucleus on unenhanced t1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology 276(3), 836–844 (2015)

    Article  Google Scholar 

  11. Chan, R.H., et al.: Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130(6), 484–495 (2014)

    Article  Google Scholar 

  12. Fahmy, A.S., Rowin, E.J., Arafati, A., Al-Otaibi, T., Maron, M.S., Nezafat, R.: Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 24(1), 1–12 (2022)

    Article  Google Scholar 

  13. Zhou, H., et al.: Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images. Eur. Radiol. 31, 3931–3940 (2021)

    Article  Google Scholar 

  14. Xu, C., et al.: Direct delineation of myocardial infarction without contrast agents using a joint motion feature learning architecture. Med. Image Anal. 50, 82–94 (2018)

    Article  Google Scholar 

  15. Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749–762 (2017)

    Article  Google Scholar 

  16. Mancio, J., et al.: Machine learning phenotyping of scarred myocardium from cine in hypertrophic cardiomyopathy. Eur. Heart J.-Cardiovasc. Imaging 23(4), 532–542 (2022)

    Article  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Touvron, H., et al.: Resmlp: feedforward networks for image classification with data-efficient training. IEEE Trans. Pattern Anal. Mach. Intell. 45, 5314–5321 (2022)

    Google Scholar 

  19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  20. Zhou, L., Zhang, Z., Chen, Y.C., Zhao, Z.Y., Yin, X.D., Jiang, H.B.: A deep learning-based radiomics model for differentiating benign and malignant renal tumors. Transl. Oncol. 12(2), 292–300 (2019)

    Article  Google Scholar 

  21. Zhang, H., Huang, L., Wu, C.Q., Li, Z.: An effective convolutional neural network based on smote and gaussian mixture model for intrusion detection in imbalanced dataset. Comput. Netw. 177, 107315 (2020)

    Article  Google Scholar 

  22. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11534–11542 (2020)

    Google Scholar 

  23. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018). shenme

    Google Scholar 

  24. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  25. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, B., Pu, C., Yu, C., Yan, Y., Hu, H., Liu, H. (2023). Pixel-Correlation-Based Scar Screening in Hypertrophic Myocardium. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14359. Springer, Cham. https://doi.org/10.1007/978-3-031-46317-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46317-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46316-7

  • Online ISBN: 978-3-031-46317-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics