Skip to main content

Proteus Based Automatic Irrigation System

  • Conference paper
  • First Online:
Intelligent Systems and Pattern Recognition (ISPR 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1941))

  • 296 Accesses

Abstract

The Traditional agricultural strategies are not satisfactory to cope with food security. This field must benefit from latest technologies.

Automatic irrigation is one of the most promising solution to maintain food security; recently, there is a growing interest in this system around the world. It has become possible to establish self-contained decision-making systems that monitor various phenomena by relying on wireless sensor networks, with the possibility of connecting them to the Internet.

The object behind this work, is to develop an automatic irrigation system based on DHT11 temperature and humidity sensor, and Arduino microcontroller. The system is tested using Proteus simulation software and the obtained results were satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gsangaya, K.R., Hajjaj, S.S.H., Sultan, M.T.H., Hua, L.S.: Portable, wireless, and effective internet of things-based sensors for precision agriculture. Int. J. Environ. Sci. Technol. 17(9), 3901–3916 (2020)

    Article  Google Scholar 

  2. Al-Rawi, M., Abdulhamid, M., Njoroge, K.: Irrigation system based on Arduino uno microcontroller. Poljoprivredna Tehnika 45(2), 67–78 (2020)

    Article  Google Scholar 

  3. Babaa, S.E., Ahmed, M., Ogunleye, B.S., Al-Jahdhami, S.A., Khan, S.A., Pillai, J.R.: Smart irrigation system using Arduino with solar power. Int. J. Eng. Tech. Res. 9(5), 91–97 (2020)

    Google Scholar 

  4. Shwetha, N., Niranjan, L., Gangadhar, N., Jahagirdar, S., Suhas, A., Sangeetha, N.: Efficient Usage of water for smart irrigation system using Arduino and Proteus design tool. In: 2nd International Conference on Smart Electronics and Communication (ICOSEC) 2021, pp. 54–61. IEEE, New Delhi (2021)

    Google Scholar 

  5. Hassan, A., et al.: A wirelessly controlled robot-based smart irrigation system by exploiting Arduino. J. Robot. Control 2(1), 29–34 (2021)

    Google Scholar 

  6. Sohraby, K., Minoli, D., Znati, T.: Wireless Sensor Networks: Technology, Protocols, and Applications. Wiley, Hoboken (2007)

    Book  Google Scholar 

  7. Zervopoulos, A., et al.: Wireless sensor network synchronization for precision agriculture applications. Agriculture 10(3), 1–20 (2020)

    Google Scholar 

  8. Difallah, W., Benahmed, K., Bounaama, F., Draoui, B., Maamar, A.: Water optimization using solar powered smart irrigation system. In: 7th International Conference on Software Engineering and New Technologies ICSENT 2018, pp. 1–4. ACM, Hammamet (2018)

    Google Scholar 

  9. Abbasi, M., Yaghmaee, M. H., Rahnama, F.: Internet of Things in agriculture: a survey. In: 2019 3rd International Conference on Internet of Things and Applications (IoT), pp. 1–12. IEEE, Isfahan (2019)

    Google Scholar 

  10. Kour, V.P., Arora, S.: Recent developments of the IoT in agriculture: a survey. IEEE Access 8, 129924–129957 (2020)

    Article  Google Scholar 

  11. Tsouros, D.C., Bibi, S., Sarigiannidis, P.G.: A review on UAV-based applications for precision agriculture. Information 10(11), 1–26 (2019)

    Google Scholar 

  12. Swamidason, I.T.J., Pandiyarajan, S., Velswamy, K., Jancy, P.L.: Futuristic IoT based smart precision agriculture: brief analysis. J. Mobile Multimedia 18(3), 935–956 (2022)

    Google Scholar 

  13. Tharik Ahamed, S., Vishnu, T., Arun Avinash, M., Gopi, M.: Research review in IOT based smart tractor for field monitoring and ploughing. Int. J. Eng. Res. Appl. 11(2), 32–38 (2021)

    Google Scholar 

  14. Fahmida Islam, S., Uddin, M.S., Bansal, J.C.: Harvesting robots for smart agriculture. In: Uddin, M.S., Bansal, J.C. (eds.) Computer Vision and Machine Learning in Agriculture. Algorithms for Intelligent Systems, vol. 2, pp. 1–13, Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-9991-7_1

  15. Bhrugubanda, M., Rao, S.L.A., Shanmukhi, M., Rao, A.S.: Sustainable and intelligent IoT based precision agriculture – smart farming. Solid State Technol. 63(6), 17824–17833 (2020)

    Google Scholar 

  16. DHT11 Humidity & Temperature Sensor. https://www.mouser.com. Accessed 06 Nov 2020

  17. Temperature and Humidity Module DHT11 Product Manual. https://components101.com/sites/default/files/component_datasheet/DHT11-Temperature-Sensor.pdf. Accessed 08 Aug 2022

  18. DHT11–Temperature and Humidity Sensor. https://components101.com/sensors/dht11-temperature-sensor. Accessed 08 Aug 2022

  19. Louis, L.: Working principle of Arduino and using IT as a tool for study and research. Int. J. Control Autom. Commun. Syst. 1(2), 21–29 (2016)

    Google Scholar 

  20. Monk, S.: Programming Arduinoâ„¢ Getting Started with Sketches. The McGraw-Hill Companies, United States (2012)

    Google Scholar 

  21. Arduino Uno. https://www.farnell.com/datasheets/1682209.pdf. Accessed 08 Aug 2022

  22. Schmidt, M.: Arduino: A Quick-Start Guide, 2nd edn. The Pragmatic Bookshelf, United States of America (2015)

    Google Scholar 

  23. Interfacing to an LCD Screen Using an Arduino. https://www.egr.msu.edu. Accessed 08 Aug 2022

  24. Guide for Relay Module with Arduino. https://randomnerdtutorials.com/guide-for-relay-module-with-arduino/. Accessed 08 Aug 2022

  25. Arduino-Relay. https://arduinogetstarted.com/tutorials/arduino-relay. Accessed 08 Aug 2022

  26. Su, J., Han, H., Liu, Y.: Thinking on the introduction of PROTEUS simulation for single-chip microcomputer teaching. Int. J. Sci. 2(11), 183–185 (2015)

    Google Scholar 

  27. Wu, F., He, T.: Application of proteus in microcontroller comprehensive design projects. In: Zhang, T. (ed.) Instrumentation, Measurement, Circuits and Systems. Advances in Intelligent and Soft Computing, vol. 127, pp. 363–369. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Intelligent Schematic User Manual. https://www.ele.uva.es/~jesman/BigSeti/ftp/Cajon_Desastre/Software-Manuales/EBook%20-%20Proteus%20Manual.pdf. Accessed 09 Aug 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Difallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Difallah, W., Nour, S., Yaga, A., Elgoul, I. (2024). Proteus Based Automatic Irrigation System. In: Bennour, A., Bouridane, A., Chaari, L. (eds) Intelligent Systems and Pattern Recognition. ISPR 2023. Communications in Computer and Information Science, vol 1941. Springer, Cham. https://doi.org/10.1007/978-3-031-46338-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46338-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46337-2

  • Online ISBN: 978-3-031-46338-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics