Skip to main content

Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem

  • Conference paper
  • First Online:
Code-Based Cryptography (CBCrypto 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14311))

Included in the following conference series:

  • 285 Accesses

Abstract

The Alternating Trilinear Form Equivalence (\(\textsf{ATFE}\)) problem was recently used as a hardness assumption in the design of a digital signature scheme by Tang et al. using the Fiat-Shamir paradigm. It is a hard equivalence problem known to be in the class of equivalence problems that includes, for instance, the Tensor Isomorphism (\(\textsf{TI}\)), Quadratic Maps Linear Equivalence (\(\textsf{QMLE}\)) and the Matrix Code Equivalence (\(\textsf{MCE}\)) problems. Due to the increased cryptographic interest, the understanding of its practical hardness has also increased in the last couple of years. Currently, there are several combinatorial and algebraic algorithms for solving it, the best of which is a graph-theoretic algorithm that also includes an algebraic subroutine.

In this paper, we take a purely algebraic approach to the \(\textsf{ATFE}\) problem, but we use a coding theory perspective to model the problem. This modelling was introduced earlier for the \(\textsf{MCE}\) problem. Using it, we improve the cost of an algebraic attack against \(\textsf{ATFE}\) compared to previously known ones.

Taking into account the algebraic structure of alternating trilinear forms, we show that the obtained system has less variables but also less equations than for \(\textsf{MCE}\) and gives rise to structural degree-3 syzygies. Under the assumption that outside of these syzygies the system behaves semi-regularly, we provide a concrete, non-asymptotic complexity estimate of the performance of our algebraic attack. Our results show that the complexity is below the estimated security levels of the signature scheme of Tang et al. and comparable to the currently best graph-theoretic attack by Beullens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In [BFV13] it was conjectured that this complexity is \(\mathcal {O}(n^9)\) i.e. polynomial. Later in [Bou11, RST22] this was reevaluated and shown that the conclusion was made based on some false assumptions. Nevertheless, even though there is no proof of the polynomial behavior of this step, in practice it does finish in an expected polynomial time.

References

  1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 411ā€“439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_14

    Chapter  Google Scholar 

  2. Bardet, M.: Ɖtude des systĆØmes algĆ©briques surdĆ©terminĆ©s. Applications aux codes correcteurs et Ć  la cryptographie. Ph.D. thesis, UniversitĆ© de Paris VI (2004)

    Google Scholar 

  3. Bardet, M., et al.: Improvements of algebraic attacks for solving the rank decoding and MinRank problems. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 507ā€“536. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_17

    Chapter  Google Scholar 

  4. Barenghi, A., Biasse, J.-F., Persichetti, E., Santini, P.: LESS-FM: fine-tuning signatures from the code equivalence problem. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 23ā€“43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_2

    Chapter  MATH  Google Scholar 

  5. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system. I. The user language. J. Symbolic Comput. 24(3ā€“4), 235ā€“265 (1997). Computational algebra and number theory (London, 1993)

    Google Scholar 

  6. BlƤser, M., et al.: The ALTEQ Signature Scheme: Algorithm Specifications and Supporting Documentation. NIST PQC Submission (2023)

    Google Scholar 

  7. Beullens, W.: Not enough LESS: an improved algorithm for solving code equivalence problems over \(\mathbb{F}_q\). In: Dunkelman, O., Jacobson, Jr., M.J., Oā€™Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 387ā€“403. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_15

    Chapter  Google Scholar 

  8. Beullens, W.: Graph-theoretic algorithms for the alternating trilinear form equivalence problem. Cryptology ePrint Archive, Paper 2022/1528 (2022). https://eprint.iacr.org/2022/1528

  9. Bouillaguet, C., FaugĆØre, J.-C., Fouque, P.-A., Perret, L.: Practical cryptanalysis of the identification scheme based on the isomorphism of polynomial with one secret problem. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 473ā€“493. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_29

    Chapter  Google Scholar 

  10. Bardet, M., FaugĆØre, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behaviour of the degree of regularity of semi-regular polynomial systems. In: Proceedings of MEGA 2005, Eighth International Symposium on Effective Methods in Algebraic Geometry (2005)

    Google Scholar 

  11. Bouillaguet, C., Fouque, P.-A., VĆ©ber, A.: Graph-theoretic algorithms for the ā€œisomorphism of polynomialsā€™ā€™ problem. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 211ā€“227. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_13

    Chapter  Google Scholar 

  12. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (linkable) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 464ā€“492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_16

    Chapter  Google Scholar 

  13. Biasse, J.-F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: code-based signatures without syndromes. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020. LNCS, vol. 12174, pp. 45ā€“65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51938-4_3

    Chapter  Google Scholar 

  14. Bouillaguet, C.: Algorithms for some hard problems and cryptographic attacks against specific cryptographic primitives. Ph.D. thesis, UniversitƩ Paris Diderot (2011)

    Google Scholar 

  15. Chou, T., et al.: Take your meds: digital signatures from matrix code equivalence. Cryptology ePrint Archive, Paper 2022/1559 (2022). https://eprint.iacr.org/2022/1559

  16. Coppersmith, D.: Solving homogeneous linear equations over gf (2) via block wiedemann algorithm. Math. Comput. 62, 333ā€“350 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Paper 2006/291 (2006)

    Google Scholar 

  18. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 759ā€“789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_26

    Chapter  Google Scholar 

  19. FaugĆØre, J.-C.: A new efficient algorithm for computing grƶbner basis (F4). J. Pure Appl. Algebra 139(1ā€“3), 61ā€“88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. FaugĆØre, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280ā€“296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_16

    Chapter  Google Scholar 

  21. FaugĆØre, J.-C., Perret, L.: Polynomial equivalence problems: algorithmic and theoretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30ā€“47. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_3

    Chapter  Google Scholar 

  22. Grochow, J.A., Qiao, Y.: On the complexity of isomorphism problems for tensors, groups, and polynomials I: tensor isomorphism-completeness. In: Lee, J.R. (ed.)12th Innovations in Theoretical Computer Science Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 31:1ā€“31:19, Dagstuhl, Germany, 2021. Schloss Dagstuhl-Leibniz-Zentrum fĆ¼r Informatik (2021)

    Google Scholar 

  23. Greub, W.H.: Multilinear Algebra. Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg (2012)

    Google Scholar 

  24. Leon, J.S.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory 28(3), 496ā€“510 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33ā€“48. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_4

    Chapter  Google Scholar 

  26. Perret, L.: A fast cryptanalysis of the isomorphism of polynomials with one secret problem. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 354ā€“370. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_21

    Chapter  Google Scholar 

  27. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Paper 2006/145 (2006)

    Google Scholar 

  28. Reijnders, K., Samardjiska, S., Trimoska, M.: Hardness estimates of the code equivalence problem in the rank metric. Cryptology ePrint Archive, Paper 2022/276 (2022)

    Google Scholar 

  29. Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practical post-quantum signature schemes from isomorphism problems of trilinear forms. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 582ā€“612. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_21

    Chapter  Google Scholar 

Download references

Acknowledgements

This research is supported by the NWO grant OCNW.M.21.193 (ALPaQCa) and the ERC Starting Grant 805031 (EPOQUE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Ran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ran, L., Samardjiska, S., Trimoska, M. (2023). Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem. In: Esser, A., Santini, P. (eds) Code-Based Cryptography. CBCrypto 2023. Lecture Notes in Computer Science, vol 14311. Springer, Cham. https://doi.org/10.1007/978-3-031-46495-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46495-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46494-2

  • Online ISBN: 978-3-031-46495-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics