Skip to main content

A Methodology for the Analysis of Robotic Systems via Process Mining

  • Conference paper
  • First Online:
Enterprise Design, Operations, and Computing (EDOC 2023)

Abstract

Robotic systems are widely adopted in various application scenarios. A very complex task for developers is the analysis of robotic systems’ behavior, which is required to ensure trustworthy interaction with the surrounding environment. Available analysis techniques, like field tests, depend on human observations, while automated techniques, like formal analysis, suffer from the complexity of the systems. Recent works show the applicability of process mining for the analysis of event data generated by robots to increase the understanding of system behavior. However, robots produce data at such a low granularity that process mining cannot provide a meaningful description of the system’s behavior. We tackle this problem by proposing a process mining-based methodology to prepare and analyze the data coming from the execution of a robotic system. The methodology supports the system developer in producing an event log compliant with process mining techniques and is used to analyze multiple perspectives of robots’ behavior. We implemented the methodology in a tool supporting its phases. We use the tool on a robotic smart agriculture scenario to evaluate the feasibility and effectiveness of the methodology.

This work was supported by the financial support of the PNRR MUR project ECS_00000041-VITALITY.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://docs.ros.org/en/foxy.

  2. 2.

    https://pros.unicam.it/tale.

  3. 3.

    https://gazebosim.org/home.

  4. 4.

    https://github.com/ros2/rosbag2.

References

  1. van der Aalst, W.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. van der Aalst, W.: Foundations of process discovery. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 37–75. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_2

    Chapter  Google Scholar 

  3. Van der Aalst, W., Bichler, M., Heinzl, A.: Robotic process automation. Bus. Inf. Syst. Eng. 60, 269–272 (2018)

    Article  Google Scholar 

  4. Afanasyev, I., et al.: Towards the internet of robotic things: analysis, architecture, components and challenges. In: DeSE, pp. 3–8. IEEE (2019)

    Google Scholar 

  5. Afyouni, I., Ray, C., Claramunt, C.: Spatial models for context-aware indoor navigation systems: a survey. J. Spat. Inf. Sci. 4, 85–123 (2012)

    Google Scholar 

  6. Afzal, A., Goues, C.L., Hilton, M., Timperley, C.S.: A study on challenges of testing robotic systems. In: ICST, pp. 96–107. IEEE (2020)

    Google Scholar 

  7. Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE TKDE 31(4), 686–705 (2018)

    Google Scholar 

  8. Bertrand, Y., Van den Abbeele, B., Veneruso, S., Leotta, F., Mecella, M., Serral Asensio, E.: A survey on the application of process mining to smart spaces data. In: Montali, M., Senderovich, A., Weidlich, M. (eds.) ICPM 2022. LNBIP, vol. 468, pp. 57–70. Springer, Cham (2022)

    Chapter  Google Scholar 

  9. Bertrand, Y., De Weerdt, J., Serral, E.: A bridging model for process mining and IoT. In: Munoz-Gama, J., Lu, X. (eds.) ICPM 2021. LNBIP, vol. 433, pp. 98–110. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98581-3_8

    Chapter  Google Scholar 

  10. Bourr, K., Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F.: Disciplined use of BPMN for mission modeling of Multi-Robot Systems. In: Forum at Practice of Enterprise Modeling, vol. 3045, pp. 1–10. CEUR-WS.org (2021)

    Google Scholar 

  11. Chitic, S.: Middleware and programming models for multi-robot systems. Ph.D. thesis, INSA de Lyon, France (2018)

    Google Scholar 

  12. Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F.: A BPMN-driven framework for Multi-Robot System development. Robot. Auton. Syst. 160, 104322 (2023)

    Article  Google Scholar 

  13. Corradini, F., Re, B., Rossi, L., Tiezzi, F.: A technique for collaboration discovery. In: Augusto, A., Gill, A., Bork, D., Nurcan, S., Reinhartz-Berger, I., Schmidt, R. (eds.) BPMDS. LNBIP, vol. 450, pp. 63–78. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07475-2_5

    Chapter  Google Scholar 

  14. Fahland, D.: Process mining over multiple behavioral dimensions with event knowledge graphs. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 274–319. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_9

    Chapter  Google Scholar 

  15. Kortenkamp, D., Simmons, R., Brugali, D.: Robotic systems architectures and programming. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 283–306. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_12

    Chapter  Google Scholar 

  16. Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification and verification of autonomous robotic systems: a survey. ACM Comput. Surv. 52(5), 100:1–100:41 (2019)

    Google Scholar 

  17. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: From low-level events to activities - a pattern-based approach. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 125–141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_8

    Chapter  Google Scholar 

  18. zur Muehlen, M., Swenson, K.D.: BPAF: a standard for the interchange of process analytics data. In: zur Muehlen, M., Su, J. (eds.) BPM 2010. LNBIP, vol. 66, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20511-8_15

    Chapter  Google Scholar 

  19. Nicoleta, T.C.: Process mining on a robotic mechanism. In: ICST Workshops, pp. 205–212. IEEE (2021)

    Google Scholar 

  20. Otsu, K., et al.: Supervised autonomy for communication-degraded subterranean exploration by a robot team. In: Aerospace Conference, pp. 1–9. IEEE (2020)

    Google Scholar 

  21. Roldán, J.J., Olivares-Méndez, M.A., del Cerro, J., Barrientos, A.: Analyzing and improving multi-robot missions by using process mining. Auton. Robot. 42(6), 1187–1205 (2018)

    Article  Google Scholar 

  22. Schmidt, M., Kirchhoff, J., von Stryk, O.: A modular and portable black box recorder for increased transparency of autonomous service robots. Robot. Autom. Lett. 7(4), 10673–10680 (2022)

    Article  Google Scholar 

  23. Seiger, R., Franceschetti, M., Weber, B.: An interactive method for detection of process activity executions from IoT data. Future Internet 15(2), 77 (2023)

    Article  Google Scholar 

  24. Takaya, K., Asai, T., Kroumov, V., Smarandache, F.: Simulation environment for mobile robots testing using ROS and Gazebo. In: ICSTCC, pp. 96–101. IEEE (2016)

    Google Scholar 

  25. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Event abstraction for process mining using supervised learning techniques. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 15, pp. 251–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56994-9_18

    Chapter  Google Scholar 

  26. Van Eck, M.L., Sidorova, N., Van der Aalst, W.: Enabling process mining on sensor data from smart products. In: International Conference on Research Challenges in Information Science, pp. 1–12. IEEE (2016)

    Google Scholar 

  27. Vicentini, F., Askarpour, M., Rossi, M.G., Mandrioli, D.: Safety assessment of collaborative robotics through automated formal verification. IEEE Trans. Robot. 36(1), 42–61 (2020)

    Article  Google Scholar 

  28. Weerdt, J.D., Wynn, M.T.: Foundations of process event data. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 193–211. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_6

    Chapter  Google Scholar 

  29. van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstraction in process mining: literature review and taxonomy. Granul. Comput. 6(3), 719–736 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Pettinari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F. (2024). A Methodology for the Analysis of Robotic Systems via Process Mining. In: Proper, H.A., Pufahl, L., Karastoyanova, D., van Sinderen, M., Moreira, J. (eds) Enterprise Design, Operations, and Computing. EDOC 2023. Lecture Notes in Computer Science, vol 14367. Springer, Cham. https://doi.org/10.1007/978-3-031-46587-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46587-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46586-4

  • Online ISBN: 978-3-031-46587-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics