Abstract
Robotic systems are widely adopted in various application scenarios. A very complex task for developers is the analysis of robotic systems’ behavior, which is required to ensure trustworthy interaction with the surrounding environment. Available analysis techniques, like field tests, depend on human observations, while automated techniques, like formal analysis, suffer from the complexity of the systems. Recent works show the applicability of process mining for the analysis of event data generated by robots to increase the understanding of system behavior. However, robots produce data at such a low granularity that process mining cannot provide a meaningful description of the system’s behavior. We tackle this problem by proposing a process mining-based methodology to prepare and analyze the data coming from the execution of a robotic system. The methodology supports the system developer in producing an event log compliant with process mining techniques and is used to analyze multiple perspectives of robots’ behavior. We implemented the methodology in a tool supporting its phases. We use the tool on a robotic smart agriculture scenario to evaluate the feasibility and effectiveness of the methodology.
This work was supported by the financial support of the PNRR MUR project ECS_00000041-VITALITY.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van der Aalst, W.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
van der Aalst, W.: Foundations of process discovery. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 37–75. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_2
Van der Aalst, W., Bichler, M., Heinzl, A.: Robotic process automation. Bus. Inf. Syst. Eng. 60, 269–272 (2018)
Afanasyev, I., et al.: Towards the internet of robotic things: analysis, architecture, components and challenges. In: DeSE, pp. 3–8. IEEE (2019)
Afyouni, I., Ray, C., Claramunt, C.: Spatial models for context-aware indoor navigation systems: a survey. J. Spat. Inf. Sci. 4, 85–123 (2012)
Afzal, A., Goues, C.L., Hilton, M., Timperley, C.S.: A study on challenges of testing robotic systems. In: ICST, pp. 96–107. IEEE (2020)
Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE TKDE 31(4), 686–705 (2018)
Bertrand, Y., Van den Abbeele, B., Veneruso, S., Leotta, F., Mecella, M., Serral Asensio, E.: A survey on the application of process mining to smart spaces data. In: Montali, M., Senderovich, A., Weidlich, M. (eds.) ICPM 2022. LNBIP, vol. 468, pp. 57–70. Springer, Cham (2022)
Bertrand, Y., De Weerdt, J., Serral, E.: A bridging model for process mining and IoT. In: Munoz-Gama, J., Lu, X. (eds.) ICPM 2021. LNBIP, vol. 433, pp. 98–110. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98581-3_8
Bourr, K., Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F.: Disciplined use of BPMN for mission modeling of Multi-Robot Systems. In: Forum at Practice of Enterprise Modeling, vol. 3045, pp. 1–10. CEUR-WS.org (2021)
Chitic, S.: Middleware and programming models for multi-robot systems. Ph.D. thesis, INSA de Lyon, France (2018)
Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F.: A BPMN-driven framework for Multi-Robot System development. Robot. Auton. Syst. 160, 104322 (2023)
Corradini, F., Re, B., Rossi, L., Tiezzi, F.: A technique for collaboration discovery. In: Augusto, A., Gill, A., Bork, D., Nurcan, S., Reinhartz-Berger, I., Schmidt, R. (eds.) BPMDS. LNBIP, vol. 450, pp. 63–78. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07475-2_5
Fahland, D.: Process mining over multiple behavioral dimensions with event knowledge graphs. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 274–319. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_9
Kortenkamp, D., Simmons, R., Brugali, D.: Robotic systems architectures and programming. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 283–306. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_12
Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification and verification of autonomous robotic systems: a survey. ACM Comput. Surv. 52(5), 100:1–100:41 (2019)
Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: From low-level events to activities - a pattern-based approach. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 125–141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_8
zur Muehlen, M., Swenson, K.D.: BPAF: a standard for the interchange of process analytics data. In: zur Muehlen, M., Su, J. (eds.) BPM 2010. LNBIP, vol. 66, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20511-8_15
Nicoleta, T.C.: Process mining on a robotic mechanism. In: ICST Workshops, pp. 205–212. IEEE (2021)
Otsu, K., et al.: Supervised autonomy for communication-degraded subterranean exploration by a robot team. In: Aerospace Conference, pp. 1–9. IEEE (2020)
Roldán, J.J., Olivares-Méndez, M.A., del Cerro, J., Barrientos, A.: Analyzing and improving multi-robot missions by using process mining. Auton. Robot. 42(6), 1187–1205 (2018)
Schmidt, M., Kirchhoff, J., von Stryk, O.: A modular and portable black box recorder for increased transparency of autonomous service robots. Robot. Autom. Lett. 7(4), 10673–10680 (2022)
Seiger, R., Franceschetti, M., Weber, B.: An interactive method for detection of process activity executions from IoT data. Future Internet 15(2), 77 (2023)
Takaya, K., Asai, T., Kroumov, V., Smarandache, F.: Simulation environment for mobile robots testing using ROS and Gazebo. In: ICSTCC, pp. 96–101. IEEE (2016)
Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Event abstraction for process mining using supervised learning techniques. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 15, pp. 251–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56994-9_18
Van Eck, M.L., Sidorova, N., Van der Aalst, W.: Enabling process mining on sensor data from smart products. In: International Conference on Research Challenges in Information Science, pp. 1–12. IEEE (2016)
Vicentini, F., Askarpour, M., Rossi, M.G., Mandrioli, D.: Safety assessment of collaborative robotics through automated formal verification. IEEE Trans. Robot. 36(1), 42–61 (2020)
Weerdt, J.D., Wynn, M.T.: Foundations of process event data. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 193–211. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_6
van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstraction in process mining: literature review and taxonomy. Granul. Comput. 6(3), 719–736 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F. (2024). A Methodology for the Analysis of Robotic Systems via Process Mining. In: Proper, H.A., Pufahl, L., Karastoyanova, D., van Sinderen, M., Moreira, J. (eds) Enterprise Design, Operations, and Computing. EDOC 2023. Lecture Notes in Computer Science, vol 14367. Springer, Cham. https://doi.org/10.1007/978-3-031-46587-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-46587-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46586-4
Online ISBN: 978-3-031-46587-1
eBook Packages: Computer ScienceComputer Science (R0)