Skip to main content

From Time Series to Multi-modality: Classifying Multivariate Time Series via Both 1D and 2D Representations

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14176))

Included in the following conference series:

  • 608 Accesses

Abstract

Multivariate time series classification is crucial for various applications such as activity recognition, disease diagnosis, and brain-computer interfaces. Deep learning methods have recently achieved promising performance thanks to their powerful representation learning capacity. However, existing deep learning-based classifiers rely solely on temporal information while disregarding clues from the frequency perspective. In this regard, we propose a novel method for classifying multivariate time series leveraging both temporal and frequency information. We first apply Short-Time Fourier Transform (STFT) to transform time series into spectrograms, which contain a 2D representation of frequency components and their temporal positions. In particular, for each variable, we generate spectrograms with varying frequencies and temporal resolutions under different window sizes. The transformation essentially adds a new modality to 1D time series and converts the multivariate time series classification into a multi-modality data classification task, making it possible to bring powerful backbones from computer vision fields to solve the time series classification problem. We then construct a dual-stream network based on the ResNet architecture that takes in both 1D and 2D representations for accurate multivariate time series classification. Our extensive experiments on 30 public datasets show our method outperforms multiple competitive state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., LeCun, Y., et al.: Scaling learning algorithms towards AI. Large-Scale Kernel Mach. 34(5), 1–41 (2007)

    Google Scholar 

  2. Bracewell, R.N., Bracewell, R.N.: The Fourier Transform and its Applications, vol. 31999. McGraw-Hill, New York (1986)

    MATH  Google Scholar 

  3. Chen, Z., Ma, Q., Lin, Z.: Time-aware multi-scale RNNs for time series modeling. In: IJCAI, pp. 2285–2291 (2021)

    Google Scholar 

  4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  5. Coyle, D., Prasad, G., McGinnity, T.M.: A time-series prediction approach for feature extraction in a brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 13(4), 461–467 (2005)

    Article  MATH  Google Scholar 

  6. Dau, H.A., et al.: Hexagon-ML: the UCR time series classification archive (2018)

    Google Scholar 

  7. Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Disc. 34(5), 1454–1495 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Fawaz, H.I., et al.: Inceptiontime: finding alexnet for time series classification. Data Min. Knowl. Disc. 34(6), 1936–1962 (2020)

    Article  MathSciNet  Google Scholar 

  10. Gao, S., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.H.: Res2net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43, 652–662 (2019)

    Article  Google Scholar 

  11. Griffin, D., Lim, J.: Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32(2), 236–243 (1984)

    Article  Google Scholar 

  12. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  15. Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNS for time series classification. Neural Netw. 116, 237–245 (2019)

    Article  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  18. Li, G., Choi, B., Xu, J., Bhowmick, S.S., Chun, K.P., Wong, G.L.H.: Shapenet: a shapelet-neural network approach for multivariate time series classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8375–8383 (2021)

    Google Scholar 

  19. Lines, J., Taylor, S., Bagnall, A.: Time series classification with hive-cote: the hierarchical vote collective of transformation-based ensembles. ACM Trans. Knowl. Disc. Data 12(5), 1–35 (2018)

    Article  Google Scholar 

  20. Liu, C.L., Hsaio, W.H., Tu, Y.C.: Time series classification with multivariate convolutional neural network. IEEE Trans. Ind. Electron. 66(6), 4788–4797 (2018)

    Article  Google Scholar 

  21. Liu, M., Kim, Y.: Classification of heart diseases based on ECG signals using long short-term memory. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2707–2710. IEEE (2018)

    Google Scholar 

  22. Liu, M., et al.: Gated transformer networks for multivariate time series classification. arXiv preprint arXiv:2103.14438 (2021)

  23. Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S.Y., Sainath, T.: Deep learning for audio signal processing. IEEE J. Sel. Topics Signal Process. 13(2), 206–219 (2019)

    Article  Google Scholar 

  24. Ren, Y., Li, L., Yang, X., Zhou, J.: Autotransformer: automatic transformer architecture design for time series classification. In: Advances in Knowledge Discovery and Data Mining: 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, 16–19 May 2022, Proceedings, Part I, pp. 143–155. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-05933-9_12

  25. Schäfer, P., Leser, U.: Multivariate time series classification with weasel+ muse. arXiv preprint arXiv:1711.11343 (2017)

  26. Shifaz, A., Pelletier, C., Petitjean, F., Webb, G.I.: TS-chief: a scalable and accurate forest algorithm for time series classification. Data Min. Knowl. Disc. 34(3), 742–775 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Smirnov, D., Nguifo, E.M.: Time series classification with recurrent neural networks. Adv. Anal. Learn. Temp. Data 8 (2018)

    Google Scholar 

  28. Spiegel, S., Gaebler, J., Lommatzsch, A., De Luca, E., Albayrak, S.: Pattern recognition and classification for multivariate time series. In: Proceedings of the Fifth International Workshop on Knowledge Discovery from Sensor Data, pp. 34–42 (2011)

    Google Scholar 

  29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  30. Tang, W., Long, G., Liu, L., Zhou, T., Blumenstein, M., Jiang, J.: Omni-scale cnns: a simple and effective kernel size configuration for time series classification. In: International Conference on Learning Representations (2021)

    Google Scholar 

  31. Tonekaboni, S., Eytan, D., Goldenberg, A.: Unsupervised representation learning for time series with temporal neighborhood coding. In: International Conference on Learning Representations (2020)

    Google Scholar 

  32. Tran, T.M., Le, X.M.T., Nguyen, H.T., Huynh, V.N.: A novel non-parametric method for time series classification based on k-nearest neighbors and dynamic time warping barycenter averaging. Eng. Appl. Artif. Intell. 78, 173–185 (2019)

    Article  Google Scholar 

  33. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  34. Woo, G., Liu, C., Sahoo, D., Kumar, A., Hoi, S.: Cost: contrastive learning of disentangled seasonal-trend representations for time series forecasting. arXiv preprint arXiv:2202.01575 (2022)

  35. Woo, G., Liu, C., Sahoo, D., Kumar, A., Hoi, S.: Etsformer: exponential smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381 (2022)

  36. Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., Long, M.: Timesnet: temporal 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186 (2022)

  37. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  38. Yang, C., Jiang, W., Guo, Z.: Time series data classification based on dual path CNN-RNN cascade network. IEEE Access 7, 155304–155312 (2019)

    Article  Google Scholar 

  39. Yang, C., Wang, X., Yao, L., Long, G., Jiang, J., Xu, G.: Attentional gated res2net for multivariate time series classification. Neural Process. Lett. 55, 1–25 (2022)

    Google Scholar 

  40. Yang, J., Nguyen, M.N., San, P.P., Li, X., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition. In: IJCAI, Buenos Aires, Argentina, vol. 15, pp. 3995–4001 (2015)

    Google Scholar 

  41. Yue, Z., et al.: Ts2vec: towards universal representation of time series. arXiv preprint arXiv:2106.10466 (2021)

  42. Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., Eickhoff, C.: A transformer-based framework for multivariate time series representation learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2114–2124 (2021)

    Google Scholar 

  43. Zhang, D., Zuo, W., Zhang, D., Zhang, H.: Time series classification using support vector machine with gaussian elastic metric kernel. In: 2010 20th International Conference on Pattern Recognition, pp. 29–32. IEEE (2010)

    Google Scholar 

  44. Zhang, H., et al.: Resnest: split-attention networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2736–2746 (2022)

    Google Scholar 

  45. Zhang, X., Gao, Y., Lin, J., Lu, C.T.: Tapnet: multivariate time series classification with attentional prototypical network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6845–6852 (2020)

    Google Scholar 

  46. Zhao, B., Lu, H., Chen, S., Liu, J., Wu, D.: Convolutional neural networks for time series classification. J. Syst. Eng. Electron. 28(1), 162–169 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, C., Wang, X., Yao, L., Long, G., Xu, G. (2023). From Time Series to Multi-modality: Classifying Multivariate Time Series via Both 1D and 2D Representations. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14176. Springer, Cham. https://doi.org/10.1007/978-3-031-46661-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46661-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46660-1

  • Online ISBN: 978-3-031-46661-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics