Skip to main content

Incremental Natural Gradient Boosting for Probabilistic Regression

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14176))

Included in the following conference series:

  • 603 Accesses

Abstract

The natural gradient boosting method for probabilistic regression \((\mathrm {{\textbf {NGBoost}}})\) is capable of predicting not only point estimates but also target distributions under sample conditions, thereby quantifying prediction uncertainty. However, NGBoost is designed only for batch settings, which are not well-suited for data stream learning. In this paper, we present an incremental natural gradient boosting method for probabilistic regression \((\mathrm {{\textbf {INGBoost}}})\). The proposed method employs scoring rule reduction as a metric and applies the Hoeffding inequality incrementally to construct decision trees that fit the natural gradient, thus achieving incremental natural gradient boosting. Experimental results demonstrate that INGBoost performs well in both point regression and probabilistic regression tasks while maintaining the interpretability of the tree model. Furthermore, the model size of INGBoost is significantly smaller than that of NGBoost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S.I.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)

    Article  Google Scholar 

  2. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  3. Avati, A., Duan, T., Zhou, S., Jung, K., Shah, N.H., Ng, A.Y.: Countdown regression: sharp and calibrated survival predictions. In: Uncertainty in Artificial Intelligence, pp. 145–155. PMLR (2020)

    Google Scholar 

  4. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. Society for Industrial and Applied Mathematics (2007). https://doi.org/10.1137/1.9781611972771.42

  5. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7_22

    Chapter  Google Scholar 

  6. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  7. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80. ACM (2000). https://doi.org/10.1145/347090.347107

  8. Duan, T., et al.: NGBoost: natural gradient boosting for probabilistic prediction. In: International Conference on Machine Learning, pp. 2690–2700. PMLR (2020)

    Google Scholar 

  9. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

  10. Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed data streams. In: Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 523–528. ACM (2003). https://doi.org/10.1145/956750.956813

  11. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. J. Am. stat. Assoc. 102(477), 359–378 (2007). https://doi.org/10.1198/016214506000001437

  12. Hoeffding, W.: Probability inequalities for sums of bounded random variables. In: Fisher, N.I., Sen, P.K. (eds.) The Collected Works of Wassily Hoeffding, pp. 409–426. Springer, New York (1994). https://doi.org/10.1007/978-1-4612-0865-5_26

    Chapter  MATH  Google Scholar 

  13. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106. ACM (2001). https://doi.org/10.1145/502512.502529

  14. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data streams. Data Min. Knowl. Disc. 23(1), 128–168 (2011). https://doi.org/10.1007/s10618-010-0201-y

    Article  MathSciNet  MATH  Google Scholar 

  15. Ikonomovska, E., Gama, J., Džeroski, S.: Online tree-based ensembles and option trees for regression on evolving data streams. Neurocomputing 150, 458–470 (2015). https://doi.org/10.1016/j.neucom.2014.04.076

  16. Ikonomovska, E., Gama, J., Zenko, B., Dzeroski, S.: Speeding-up hoeffding-based regression trees with options. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 537–544 (2011)

    Google Scholar 

  17. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  18. Maron, O., Moore, A.: Hoeffding races: accelerating model selection search for classification and function approximation. In: Advances in Neural Information Processing Systems 6 (1993)

    Google Scholar 

  19. Mastelini, S.M., Barbon Jr, S., de Carvalho, A.C.P.d.L.F.: Online multi-target regression trees with stacked leaf models. arXiv preprint arXiv:1903.12483 (2019)

  20. Read, J., Bifet, A., Holmes, G., Pfahringer, B.: Scalable and efficient multi-label classification for evolving data streams. Mach. Learn. 88(1–2), 243–272 (2012). https://doi.org/10.1007/s10994-012-5279-6

    Article  MathSciNet  Google Scholar 

Download references

Acknowments

provincial scientific research institutes’ achievement transformation project of the science and technology department of Sichuan Province, China (2023JDZH0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, W., Zhang, H., Yang, C., Li, B., Zhao, X. (2023). Incremental Natural Gradient Boosting for Probabilistic Regression. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14176. Springer, Cham. https://doi.org/10.1007/978-3-031-46661-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46661-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46660-1

  • Online ISBN: 978-3-031-46661-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics