Abstract
Quantum machine learning has been developing in recent years, demonstrating great potential in various research domains and promising applications for pattern recognition. However, due to the constraints of quantum hardware, the input qubits are restricted caused by small circuit size, and the fuzziness in all dimensions caused by the features that are difficult to be effectively mined. Besides, previous studies focus on binary classification, but multi-classification received little attention. To address the difficulty in multi-classification, this paper proposed a hybrid multi-branches quantum-classical neural network (HM-QCNN) that utilizes a multi-branch strategy to construct the convolutional part. The part consists of three branches to extract the features of different scales and morphologies. Two quantum convolutional layers apply quantum CRZ gates and rotational gates to design a random quantum circuit (RQC) with 4 qubits and full qubits measurements. The experiments on three public datasets (MNIST, Fashion MNIST, and MedMNIST) demonstrate that HM-QCNN outperforms other prevalent methods with accuracy, precision, and convergence speed. Compared with the classical CNN and the hybrid neural network without multi-branches, HM-QCNN reached 97.40% and improved the accuracy of classification by 6.45% and 1.36% on the MNIST dataset, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lü, Y., Gao, Q., Lü, J., Ogorzałek, M., Zheng, J.: A quantum convolutional neural network for image classification. In: 2021 40th Chinese Control Conference (CCC), pp. 6329–6334 (2021). https://doi.org/10.23919/CCC52363.2021.9550027
Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 5(1) (2019) https://doi.org/10.1088/2058-9565/ab5944
Liu, Y., Wang, D., Xue, S., Huang, A.: Variational quantum circuits for quantum state tomography. Phys. Rev. A. 101(5) (2020). https://doi.org/10.1103/PhysRevA.101.052316
McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18(2) (2016). https://doi.org/10.1088/1367-2630/18/2/023023
García-Pérez, G., Rossi, M.A. C., Maniscalco, S.: IBM Q experience as a versatile experimental testbed for simulating open quantum systems. NPJ Quantum Inf. 6(1) (2020). https://doi.org/10.1038/s41534-019-0235-y
Du, Y., Hsieh, M.-H., Liu, T., Tao, D.: Expressive power of parametrized quantum circuits. Phys. Rev. Res. 2(3) (2020). https://doi.org/10.1103/PhysRevResearch.2.033125
Lloyd, S., Weedbrook, C.: Quantum generative adversarial learning. Phys. Rev. Lett. 121(4) (2018). https://doi.org/10.1103/PhysRevLett.121.040502
Trochun, Y., Stirenko, S., Rokovyi, O., Alienin, O.: Hybrid classic-quantum neural networks for image classification. In: 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), pp. 968–972 (2021). https://doi.org/10.1109/idaacs53288.2021.9661011
MacCormack, I., Delaney, C., Galda, A., Aggarwal, N., Narang, P.: Branching quantum convolutional neural networks. Phys. Rev. Res. 4(1) (2022). https://doi.org/10.1103/PhysRevResearch.4.013117
Henderson, M., Shakya, S., Pradhan, S., Cook, T.: Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Mach. Intell. 2(2) (2020). https://doi.org/10.1007/s42484-020-00012-y
Hur, T., Kim, L., Park, D.K.: Quantum convolutional neural network for classical data classification. Quantum Mach. Intell. 4(1) (2022). https://doi.org/10.1007/s42484-021-00061-x
Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data. Quantum Sci. Technol. 2(4) (2017). https://doi.org/10.1088/2058-9565/aa8072
Ding, Y., Lamata, L., Sanz, M., Chen, X., Solano, E.: Experimental implementation of a quantum autoencoder via quantum adders. Adv. Quantum Technol. 2(7–8) (2019). https://doi.org/10.1002/qute.201800065
Jain, S., Ziauddin, J., Leonchyk, P., Yenkanchi, S., Geraci, J.: Quantum and classical machine learning for the classification of non-small-cell lung cancer patients. SN Appl. Sci. 2(6) (2020). https://doi.org/10.1007/s42452-020-2847-4
Pandian, A., Kanchanadevi, K., Mohan, V.C., Krishna, P.H. and Govardhan, E.:Quantum generative adversarial network and quantum neural network for image classification. In: 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), pp.473–478 (2022). https://doi.org/10.1109/icscds53736.2022.9760943
Jonathan Romero, A.A.-G.: Variational quantum generators: generative adversarial quantum machine learning for continuous distributions. Adv. Quantum Technol. 4(1) (2020). https://doi.org/10.1002/qute.202000003
Patrick Rebentrost, M.M., Lloyd, S.: Quantum support vector machine for big data classification. Phys Rev Lett. 113(13) (2014). https://doi.org/10.1103/10.1103/PhysRevLett.113.130503113.130503
Havlíček, V., et al.: Supervised learning with quantum-enhanced feature spaces. Nature 567(209–212) (2019). https://doi.org/10.1038/s41586-019-0980-2
Grant, E., Benedetti, M., Cao, S., Hallam, A.: Hierarchical quantum classifiers. NPJ Quantum Inf. 4(1) (2018). https://doi.org/10.1038/s41534-018-0116-9
Yang, S., Wang, M., Feng, Z., Liu, Z., Rundong, L.: Deep sparse tensor filtering network for synthetic aperture radar images classification. IEEE Trans. Neural Netw. Learn. Syst. 29, 3919–3924 (2018). https://doi.org/10.1109/TNNLS.2017.2688466
Liu, J., Lim, K. H., Wood, K. L., Huang, W.: Hybrid quantum-classical convolutional neural networks. Sci. China Phys. Mech. Astron. 64(9) (2021). https://doi.org/10.1007/s11433-021-1734-3
Wei, S., Chen, Y., Zhou, Z., Long, G.: A quantum convolutional neural network on NISQ devices. AAPPS Bull. 32(1) (2022). https://doi.org/10.1007/s43673-021-00030-3
Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(1273–1278) (2019). https://doi.org/10.1038/s41567-019-0648-8
Tacchino, F., Barkoutsos, P. K., Macchiavello, C., Gerace, D.: Variational learning for quantum artificial neural networks. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp.130–136 (2020). https://doi.org/10.1109/qce49297.2020.00026
Jian, Z., Zhao-Yun, C., Xi-Ning, Z., Cheng, X.: Quantum state preparation and its prospects in quantum machine learning. Acta Phys. Sin. 70(14) (2021). https://doi.org/10.7498/aps.70.20210958
Yuki Takeuchi, T.M.: Quantum computational universality of hypergraph states with Pauli-X and Z basis measurements. Sci. Rep. 13585(9) (2019). https://doi.org/10.1038/s41598-019-49968-3
Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Ahmed, S.: PennyLane: automatic differentiation of hybrid quantum-classical computations. ArXiv. (2022). https://doi.org/10.48550/arXiv.1811.04968
Acknowledgements
This work was supported in part by the National Key R&D Program of China (2020YFB1712401), the Nature Science Foundation of China (62006210), the Key Scientific and Technology Project of Henan Province of China (221100210100, 221100211200, 221100210600), the Key Project of Collaborative Innovation in Nanyang (22XTCX12001), the Research Foundation for Advanced Talents of Zhengzhou University (32340306), Preresearch Project of Songshan Laboratory (YYJC022022001), and Supported project by Songshan Laboratory (232102210154).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, H., Gao, Y., Shi, L., Wei, L., Shan, Z., Zhao, B. (2023). HM-QCNN: Hybrid Multi-branches Quantum-Classical Neural Network for Image Classification. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14177. Springer, Cham. https://doi.org/10.1007/978-3-031-46664-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-46664-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46663-2
Online ISBN: 978-3-031-46664-9
eBook Packages: Computer ScienceComputer Science (R0)