Skip to main content

LAANet: An Efficient Automatic Modulation Recognition Model Based on LSTM-Autoencoder and Attention Mechanism

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14177))

Included in the following conference series:

  • 483 Accesses

Abstract

This paper focuses on the task of automatic modulation recognition. Existing studies have shown low recognition accuracy at low signal-to-noise ratios, and models with a large number of parameters usually demand substantial computational resources, resulting in slower reasoning processes. In this paper, we propose a novel architecture for efficient recognition based on LSTM-Autoencoder and attention mechanism to address these challenges. Experimental results on benchmark datasets show that the proposed method achieves an average recognition accuracy of 62.43% and 64.49% on the RadioML2016.10a and RadioML2016.10b datasets, respectively. On the RadioML2016.10a dataset, the proposed model outperforms other SOTA models with a 2 \(\sim \) 6% points improvement in recognition accuracy. The model also demonstrates superior recognition accuracy for both QAM64 and QAM16 modulation schemes and effectively increases average recognition accuracy by 1–2 percentage points in the -8dB to 2(\(\pm 2\)) dB lower SNR range, indicating its noise robustness. On the RadioML2016.10b dataset, the proposed method’s recognition accuracy is slightly higher than the SOTA model, demonstrating good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi, A., Dobre, O.A., Choudhry, R., Bar-Ness, Y., Su, W.: Modulation classification in fading channels using antenna arrays. In: IEEE MILCOM 2004. Military Communications Conference, 2004. vol. 1, pp. 211–217. IEEE (2004)

    Google Scholar 

  2. Beidas, B.F., Weber, C.L.: Higher-order correlation-based classification of asynchronous MFSK signals. In: Proceedings of MILCOM’96 IEEE Military Communications Conference, vol. 3, pp. 1003–1009. IEEE (1996)

    Google Scholar 

  3. Lay, N.E., Polydoros, A.: Modulation classification of signals in unknown ISI environments. In: Proceedings of MILCOM’95, vol. 1, pp. 170–174. IEEE (1995)

    Google Scholar 

  4. Hassanpour, S., Pezeshk, A.M., Behnia, F.: Automatic digital modulation recognition based on novel features and support vector machine. In: 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 172–177. IEEE (2016)

    Google Scholar 

  5. Moser, E., Moran, M.K., Hillen, E., Li, D., Wu, Z.: Automatic modulation classification via instantaneous features. In: 2015 National Aerospace and Electronics Conference (NAECON), pp. 218–223. IEEE (2015)

    Google Scholar 

  6. O’Shea, T.J., Corgan, J., Clancy, T.C.: Convolutional radio modulation recognition networks. In: Engineering Applications of Neural Networks: 17th International Conference, EANN 2016, Aberdeen, UK, September 2–5, 2016, Proceedings 17. pp. 213–226. Springer (2016)

    Google Scholar 

  7. Hermawan, A.P., Ginanjar, R.R., Kim, D.S., Lee, J.M.: CNN-based automatic modulation classification for beyond 5G communications. IEEE Commun. Lett. 24(5), 1038–1041 (2020)

    Article  Google Scholar 

  8. Hong, D., Zhang, Z., Xu, X.: Automatic modulation classification using recurrent neural networks. In: 2017 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 695–700. IEEE (2017)

    Google Scholar 

  9. Xu, J., Luo, C., Parr, G., Luo, Y.: A spatiotemporal multi-channel learning framework for automatic modulation recognition. IEEE Wireless Commun. Lett. 9(10), 1629–1632 (2020)

    Article  Google Scholar 

  10. O’shea, T.J., West, N.: Radio machine learning dataset generation with gnu radio. In: Proceedings of the GNU Radio Conference, vol. 1 (2016)

    Google Scholar 

  11. O’Shea, T.J., Roy, T., Clancy, T.C.: Over-the-air deep learning based radio signal classification. IEEE J. Sel. Topics Signal Process. 12(1), 168–179 (2018)

    Article  Google Scholar 

  12. Viterbi, A.J., Omura, J.K.: Principles of digital communication and coding. Courier Corporation (2013)

    Google Scholar 

  13. Huynh-The, T., Hua, C.H., Pham, Q.V., Kim, D.S.: MCNET: an efficient CNN architecture for robust automatic modulation classification. IEEE Commun. Lett. 24(4), 811–815 (2020)

    Article  Google Scholar 

  14. Tekbıyık, K., Ekti, A.R., Görçin, A., Kurt, G.K., Keçeci, C.: Robust and fast automatic modulation classification with CNN under multipath fading channels. In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp. 1–6. IEEE (2020)

    Google Scholar 

  15. Liu, X., Yang, D., El Gamal, A.: Deep neural network architectures for modulation classification. In: 2017 51st Asilomar Conference on Signals, Systems, and Computers, pp. 915–919. IEEE (2017)

    Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. Rajendran, S., Meert, W., Giustiniano, D., Lenders, V., Pollin, S.: Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. IEEE Trans. Cognitive Commun. Netw. 4(3), 433–445 (2018)

    Article  Google Scholar 

  18. West, N.E., O’shea, T.: Deep architectures for modulation recognition. In: 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 1–6. IEEE (2017)

    Google Scholar 

  19. Ke, Z., Vikalo, H.: Real-time radio technology and modulation classification via an LSTM auto-encoder. IEEE Trans. Wireless Commun. 21(1), 370–382 (2021)

    Article  Google Scholar 

  20. Yunhao, S., Hua, X., Lei, J., Zisen, Q.: ConvLSTMAE: a spatiotemporal parallel autoencoders for automatic modulation classification. IEEE Commun. Lett. 26(8), 1804–1808 (2022)

    Article  Google Scholar 

  21. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)

    Google Scholar 

  22. Njoku, J.N., Morocho-Cayamcela, M.E., Lim, W.: CGDNET: efficient hybrid deep learning model for robust automatic modulation recognition. IEEE Netw. Lett. 3(2), 47–51 (2021)

    Article  Google Scholar 

  23. Zhang, F., Luo, C., Xu, J., Luo, Y.: An efficient deep learning model for automatic modulation recognition based on parameter estimation and transformation. IEEE Commun. Lett. 25(10), 3287–3290 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Q., Zhou, X. (2023). LAANet: An Efficient Automatic Modulation Recognition Model Based on LSTM-Autoencoder and Attention Mechanism. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14177. Springer, Cham. https://doi.org/10.1007/978-3-031-46664-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46664-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46663-2

  • Online ISBN: 978-3-031-46664-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics