Skip to main content

Duet Representation Learning with Entity Multi-attribute Information in Knowledge Graphs

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14177))

Included in the following conference series:

  • 977 Accesses

Abstract

Representation Learning (RL) of knowledge graphs aims to project both entities and relations into a continuous low-dimension space. Most methods concentrate on learning entities’ representations with structure information indicating the relations between entities (Trans- methods), while the utilization of entity multi-attribute information is insufficient for some scenarios, such as cold start issues or zero-shot problems. How to utilize the complex and diverse multi-attribute information for RL is still a challenging problem for enhancing knowledge graph embedding research. In this paper, we propose a novel RL model Duet Entity Representation Learning (DERL) for knowledge graphs, which takes advantage of entity multi-attribute information. Specifically, we devise a novel encoder Entity Attribute Encoder (EAE), which encodes both entity attribute types and values to generate the entities’ attribute-based representations. We further learn the entities’ representations with both structure information and multi-attribute information in DERL. We evaluate our method on two tasks: the knowledge graph completion task and the zero-shot task. Experimental results on real-world datasets show that our method outperforms other baselines on two downstream tasks by building effective representations for entities from their multi-attribute information. The source code of this paper can be obtained from https://anonymous.4open.science/r/DUET-adma2023/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of ICMD, pp. 1247–1250 (2008)

    Google Scholar 

  2. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  3. Che, F., Zhang, D., Tao, J., Niu, M., Zhao, B.: Parame: regarding neural network parameters as relation embeddings for knowledge graph completion. In: Proceedings of AAAI, pp. 2774–2781 (2020)

    Google Scholar 

  4. Chen, S., Liu, X., Gao, J., Jiao, J., Zhang, R., Ji, Y.: Hitter: Hierarchical transformers for knowledge graph embeddings. In: Proceedings of EMNLP, pp. 10395–10407 (2021)

    Google Scholar 

  5. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs, pp. 4289–4300 (2018)

    Google Scholar 

  6. Lin, Y., Liu, Z., Sun, M.: Knowledge representation learning with entities, attributes and relations. In: Proceedings of IJCAI, pp. 2866–2872 (2016)

    Google Scholar 

  7. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of AAAI, pp. 2181–2187 (2015)

    Google Scholar 

  8. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from multilingual wikipedias. In: Proceedings of IDSR (2015)

    Google Scholar 

  9. Nguyen, D.Q., Vu, T., Nguyen, T.D., Phung, D.: Quatre: relation-aware quaternions for knowledge graph embeddings. CoRR abs/ arXiv: 2009.12517 (2020)

  10. Shah, H., Villmow, J., Ulges, A., Schwanecke, U., Shafait, F.: An open-world extension to knowledge graph completion models. In: Proceedings of the AAAI, pp. 3044–3051 (2019)

    Google Scholar 

  11. Shen, Y., Li, Z., Wang, X., Li, J., Zhang, X.: Datatype-aware knowledge graph representation learning in hyperbolic space. In: Proceedings of CIKM, pp. 1630–1639 (2021)

    Google Scholar 

  12. Shi, B., Weninger, T.: Open-world knowledge graph completion. CoRR abs/ arXiv: 1711.03438 (2017)

  13. Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment with knowledge graph embedding. In: Proceedings of IJCAI, pp. 4396–4402 (2018)

    Google Scholar 

  14. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. In: Proceedings of ICLR (2019)

    Google Scholar 

  15. Trisedya, B.D., Qi, J., Zhang, R.: Entity alignment between knowledge graphs using attribute embeddings. In: Proceedings of AAAI, pp. 297–304 (2019)

    Google Scholar 

  16. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of ICML, pp. 2071–2080 (2016)

    Google Scholar 

  17. Wang, S., et al.: Knowledge graph representation via hierarchical hyperbolic neural graph embedding. In: 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021, pp. 540–549. IEEE (2021). https://doi.org/10.1109/BigData52589.2021.9671651

  18. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of AAAI, pp. 1112–1119 (2014)

    Google Scholar 

  19. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: Proceedings of AAAI, pp. 2659–2665 (2016)

    Google Scholar 

  20. Xie, R., Liu, Z., Luan, H., Sun, M.: Image-embodied knowledge representation learning. In: Proceedings of IJCAI, pp. 3140–3146 (2017)

    Google Scholar 

  21. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Bengio, Y., LeCun, Y. (eds.) In Proceedings of ICLR (2015)

    Google Scholar 

  22. Yang, K., Liu, S., Zhao, J., Wang, Y., Xie, B.: COTSAE: co-training of structure and attribute embeddings for entity alignment. In: Proceedings of AAAI, pp. 3025–3032 (2020)

    Google Scholar 

  23. Yin, J., Jiang, X., Lu, Z., Shang, L., Li, H., Li, X.: Neural generative question answering. In: Proceedings of IJCAI, pp. 2972–2978 (2016)

    Google Scholar 

  24. Zhang, F., Wang, X., Li, Z., Li, J.: Transrhs: A representation learning method for knowledge graphs with relation hierarchical structure. In: Proceedings of IJCAI, pp. 2987–2993 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangtong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Zhang, Y., Yang, Y., Xu, H., Yue, L. (2023). Duet Representation Learning with Entity Multi-attribute Information in Knowledge Graphs. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14177. Springer, Cham. https://doi.org/10.1007/978-3-031-46664-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46664-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46663-2

  • Online ISBN: 978-3-031-46664-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics