Skip to main content

DANAA: Towards Transferable Attacks with Double Adversarial Neuron Attribution

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Abstract

While deep neural networks have excellent results in many fields, they are susceptible to interference from attacking samples resulting in erroneous judgments. Feature-level attacks are one of the effective attack types, which target the learned features in the hidden layers to improve their transferability across different models. Yet it is observed that the transferability has been largely impacted by the neuron importance estimation results. In this paper, a double adversarial neuron attribution attack method, termed ‘DANAA’, is proposed to obtain more accurate feature importance estimation. In our method, the model outputs are attributed to the middle layer based on an adversarial non-linear path. The goal is to measure the weight of individual neurons and retain the features that are more important toward transferability. We have conducted extensive experiments on the benchmark datasets to demonstrate the state-of-the-art performance of our method. Our code is available at: https://github.com/Davidjinzb/DANAA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aizat, K., Mohamed, O., Orken, M., Ainur, A., Zhumazhanov, B.: Identification and authentication of user voice using DNN features and I-vector. Cogent Eng. 7(1), 1751557 (2020)

    Article  Google Scholar 

  2. Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-efficient black-box adversarial attack via random search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XXIII. LNCS, vol. 12368, pp. 484–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_29

    Chapter  Google Scholar 

  3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  4. Chen, S., Kahla, M., Jia, R., Qi, G.J.: Knowledge-enriched distributional model inversion attacks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16178–16187 (2021)

    Google Scholar 

  5. Cheng, S., Dong, Y., Pang, T., Su, H., Zhu, J.: Improving black-box adversarial attacks with a transfer-based prior. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  6. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  7. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9185–9193 (2018)

    Google Scholar 

  8. Dong, Y., Pang, T., Su, H., Zhu, J.: Evading defenses to transferable adversarial examples by translation-invariant attacks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4312–4321 (2019)

    Google Scholar 

  9. Fu, J., Sun, J., Wang, G.: Boosting black-box adversarial attacks with meta learning. In: 2022 41st Chinese Control Conference (CCC), pp. 7308–7313. IEEE (2022)

    Google Scholar 

  10. Ganeshan, A., BS, V., Babu, R.V.: FDA: feature disruptive attack. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8069–8079 (2019)

    Google Scholar 

  11. Gao, L., Zhang, Q., Song, J., Liu, X., Shen, H.T.: Patch-wise attack for fooling deep neural network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, XXVIII. LNCS, vol. 12373, pp. 307–322. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_19

    Chapter  Google Scholar 

  12. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Black-box adversarial attacks with limited queries and information. In: International Conference on Machine Learning, pp. 2137–2146. PMLR (2018)

    Google Scholar 

  15. Ilyas, A., Engstrom, L., Madry, A.: Prior convictions: black-box adversarial attacks with bandits and priors. arXiv preprint arXiv:1807.07978 (2018)

  16. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236 (2016)

  17. Li, H., Xu, X., Zhang, X., Yang, S., Li, B.: QEBA: query-efficient boundary-based blackbox attack. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1221–1230 (2020)

    Google Scholar 

  18. Long, Y., et al.: Frequency domain model augmentation for adversarial attack. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part IV. LNCS, vol. 13664, pp. 549–566. Springer, Cham (2022)

    Google Scholar 

  19. Ma, C., Chen, L., Yong, J.H.: Simulating unknown target models for query-efficient black-box attacks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11835–11844 (2021)

    Google Scholar 

  20. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  21. Naseer, M., Khan, S.H., Rahman, S., Porikli, F.: Task-generalizable adversarial attack based on perceptual metric. arXiv preprint arXiv:1811.09020 (2018)

  22. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017)

    Google Scholar 

  23. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  24. Struppek, L., Hintersdorf, D., Correia, A.D.A., Adler, A., Kersting, K.: Plug & play attacks: towards robust and flexible model inversion attacks. arXiv preprint arXiv:2201.12179 (2022)

  25. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  26. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  28. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  29. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.: Ensemble adversarial training: attacks and defenses. arXiv preprint arXiv:1705.07204 (2017)

  30. Wadawadagi, R., Pagi, V.: Sentiment analysis with deep neural networks: comparative study and performance assessment. Artif. Intell. Rev. 53(8), 6155–6195 (2020)

    Article  Google Scholar 

  31. Wang, X., He, K.: Enhancing the transferability of adversarial attacks through variance tuning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1924–1933 (2021)

    Google Scholar 

  32. Wang, Z., Guo, H., Zhang, Z., Liu, W., Qin, Z., Ren, K.: Feature importance-aware transferable adversarial attacks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7639–7648 (2021)

    Google Scholar 

  33. Xiao, C., Li, B., Zhu, J.Y., He, W., Liu, M., Song, D.: Generating adversarial examples with adversarial networks. arXiv preprint arXiv:1801.02610 (2018)

  34. Xie, C., et al.: Improving transferability of adversarial examples with input diversity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2730–2739 (2019)

    Google Scholar 

  35. Xiong, Y., Lin, J., Zhang, M., Hopcroft, J.E., He, K.: Stochastic variance reduced ensemble adversarial attack for boosting the adversarial transferability. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14983–14992 (2022)

    Google Scholar 

  36. Zhang, J., et al.: Improving adversarial transferability via neuron attribution-based attacks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14993–15002 (2022)

    Google Scholar 

  37. Zhang, Y., Jia, R., Pei, H., Wang, W., Li, B., Song, D.: The secret revealer: generative model-inversion attacks against deep neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 253–261 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, Z., Zhu, Z., Wang, X., Zhang, J., Shen, J., Chen, H. (2023). DANAA: Towards Transferable Attacks with Double Adversarial Neuron Attribution. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14177. Springer, Cham. https://doi.org/10.1007/978-3-031-46664-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46664-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46663-2

  • Online ISBN: 978-3-031-46664-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics