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Abstract. Knowledge graph completion (KGC) is the task of inferencing missing
facts from any given knowledge graphs (KG). Previous KGC methods typically
represent knowledge graph entities and relations as trainable continuous embed-
dings and fuse the embeddings of the entity h (or t) and relation r into hidden
representations of query (h, r, ?) (or (?, r, t)) to approximate the missing entities.
To achieve this, they either use shallow linear transformations or deep convolu-
tional modules. However, the linear transformations suffer from the expressiveness
issue while the deep convolutional modules introduce unnecessary inductive bias,
which could potentially degrade the model performance. Thus, we propose a
novel Transformer-based Patch Refinement Model (PatReFormer) for KGC.
PatReFormer first segments the embedding into a sequence of patches and
then employs cross-attention modules to allow bi-directional embedding feature
interaction between the entities and relations, leading to a better understanding of
the underlying KG. We conduct experiments on four popular KGC benchmarks,
WN18RR, FB15k-237, YAGO37 and DB100K. The experimental results show
significant performance improvement from existing KGC methods on standard
KGC evaluation metrics, e.g., MRR and H@n. Our analysis first verifies the ef-
fectiveness of our model design choices in PatReFormer. We then find that
PatReFormer can better capture KG information from a large relation embed-
ding dimension. Finally, we demonstrate that the strength of PatReFormer is at
complex relation types, compared to other KGC models 3.

Keywords: Knowledge Graph Completion · Transformer · Cross-Attention.

1 Introduction

Knowledge graphs (KGs) have emerged as a powerful tool for representing structured
knowledge in a wide range of applications, including information retrieval, question
answering and recommendation systems. A typical KG is represented as a large collection
of triples (head entity, relation, tail entity), denoted as (h, r, t). Despite having large
amount of KG triples, many real-world KGs still suffer from incompleteness issue. To

3 Source code is at https://github.com/chenchens190009/PatReFormer
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alleviate this issue, the task of knowledge graph completion (KGC) is proposed [1,7,8,13],
which is to predict the missing entity given the query (h, r, ?) or (?, r, t).

Existing methods for KGC generally learn continuous embeddings for entities and
relations, with the goal of capturing the inherent structure and semantics of the knowl-
edge graph. They define various scoring functions to aggregate the embeddings of the
entity and relation, forming a hidden representation of query (h, r, ?) (or (?, r, t)) and de-
termine the plausibility between the query representation and missing entity embedding.
Essentially, these scoring functions are a set of computation operations on interactive
features of the head entity, relation and tail entity. Early KGC models like TransE [1],
DistMult [2] and ComplEx [3] use simple linear operations, such as addition, subtrac-
tion and multiplication. Despite the computational efficiency, these simple and shallow
architectures are incapable of capturing complicated features, e.g., poor expressiveness.
To improve the model expressiveness, some recent KGC models integrate the deep
neural operations into the scoring function. ConvE [8], as the start of this trend, applies
standard convolutional filters over reshaped embeddings of input entities and relations,
and subsequent models [6,9] follow this trend to further improve the expressiveness of
the feature interaction between entities and relations. Although these convolution-based
KGC models have achieved significant empirical success, they impose unnecessary
image-specific inductive bias (i.e., locality and translation equivariance) to the KGC
embedding models, potentially degrading the model performance.

To combat these limitations, in this paper, we propose a novel Transformer-based
Patch Refinement Model (PatReFormer) for the KGC task. The Transformer model is
first proposed to handle Natural Language Processing (NLP) tasks [24] and demonstrates
superior capability in other visual tasks [37]. More recently, with the recent progress
of Vision Transformer (ViT) [28], attention-based modules achieve comparable or
even better performances than their CNN counterparts on many vision tasks. Through
attention mechanism, ViT-based models could dynamically focus on different embedding
regions to obtain high-level informative features. What is more, ViT-based models do
not impose any image-specific inductive bias, allowing them to handle a wider range
of input data. Motivated by this, PatReFormer follows a “Separate-and-Aggregate”
framework. In the separation stage, PatReFormer segments the input entity and
relation embeddings into several patches. We explore three different separation schemes:
1) directly folding the embedding vector into several small patches; 2) employing several
trainable mapping matrices to obtain patches; and 3) using randomly initialized, but
orthogonal mapping matrix to obtain patches. In the aggregation stage, unlike [28,32]
which use standard Transformer architecture, PatReFormer uses a cross-attentive
architecture that deploys two separate attention modules to model the bi-directional
interaction between the head entities and relations.

To evaluate our proposed approach, we conduct experiments on several bench-
mark datasets, including WN18RR, FB15k-237, YAGO37, and DB100K, for the KGC
tasks. Our experiments show that PatReFormer successfully outperforms both non-
Transformer-based and Transformer-based KGC methods, demonstrating the effective-
ness of our approach. Our analysis shows the effectiveness of our cross-attention module
design, patch-based position design, and embedding segmentation design. We find that
PatReFormer is capable to learn useful KG knowledge using a large embedding
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dimension, while previous KGC models cannot. Finally, we demonstrate the advantages
of PatReFormer in complex relation types, compared to previous KGC methods.

2 Related Work

Non-Neural-based methods. A variety of non-neural based models are proposed for
KGC leveraging simple vector space operations, such as dot product and matrix multipli-
cation, to compute scoring function. TransE [1] and its subsequent extensions [34,33]
learn embeddings by representing relations as additive translations from head to tail
entities. DistMult [2] uses multi-linear dot product to characterize three-way interactions
among entities and relations. ComplEx [3] represents entities and relations as complex-
valued vectors, achieving an optimal balance between accuracy and efficiency. HolE
[15] utilizes cross-correlation, the inverse of circular convolution, for matching entity
embeddings. More recently, SEEK [17] proposes a framework for modeling segmented
knowledge graph embeddings and demonstrates that several existing models, including
DistMult, ComplEx, and HolE, can be considered special cases within this framework.

Neural-based methods. Neural network (NN) based methods have also been explored.
Approaches such as [35,36] employ a Multi-Layer Perceptron (MLP) to model the
scoring function. Moreover, Convolutional Neural Networks (CNN) have been utilized
for KGC tasks. ConvE [8] aplies convolutional filters over reshaped head and relation
embeddings to compute an output vector, which is then compared with all other entities
in the knowledge graph. Subsequent works, including ConvR [6] and InteractE [9]
enhance ConvE by fostering interactions between head and relation embeddings.

Transformer-based methods. The Transformer model known for employing self-attention
to process token sequences has achieved remarkable success in NLP tasks. This success
is attributed not only to its capacity for handling long-range dependencies but also to its
tokenization concept. Recently, this concept has been extended to other domains, such as
computer vision through Vision Transformers [28] and multi-modality with Two-stream
Transformers [31]. These approaches have a common thread: they decompose the data
(text or images) into smaller patches and process them using attention mechanisms. In
the field of KGC, recent works have incorporated textual information and viewed entity
and relation as the corresponding discrete descriptions. These methods often utilize pre-
trained Transformers for encoding. However, high-quality textual KG data is not always
accessible. As a result, our proposed method eschews additional textual information,
instead integrating the tokenization concept into KGC to enhance performance.

3 Method

3.1 Knowledge Graph Completion

A Knowledge Graph can be represented as (E , R, T ) where E and R denote the sets
of entities and relations respectively. T is a collection of tuples [(h, r, t)i] where head
and tail entity h, t ∈ E and relation r ∈ R. The task of Knowledge Graph Completion
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Fig. 1: An overview of PatReFormer

includes the head-to-tail prediction (e.g., predicting the head entity h in the query (?, r, t))
and the tail-to-head prediction (e.g., predicting the tail entity t in the query (h, r, ?)).

In this paper, following previous works [1,8,6], we represent head and tail entities h
and t as eh and et ∈ Rde and relation r as er ∈ Rdr . Our objective is to learn a function
F : Rde × Rdr → Rde such that given tuple (h, r, t), the output of F(eh, er) closely
approximates et. For tail-to-head prediction, we additionally generate the reversed tuple
(t, r−1, h) and train the output of F(et, er−1) to be closed to eh.

3.2 PatReFormer

In this section, we will introduce the details of PatReFormer. Fig.1 shows the
overview of our PatReFormer model, which comprises three components: Embedding
Segmentation, Cross-Attention Encoder, and Similarity Scorer.

Embedding Segmentation. At this stage, PatReFormer converts entity and relation
embeddings into sequences of patches. Formally, a segmentation function pat(·) is
defined as follows:

p0,p1, · · · ,pk = pat(e) (1)
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Fig. 2: Variants for Embedding Segmentation. ⊙ denotes dot product operation. The
mapping vectors with similar color (blue, yellow, grey) of frozen segmentation are
mutually orthogonal.

where e ∈ Rk·d is the input entity or relation embeddings. pi ∈ Rd are segmented
patches. k is the sequence length of the generated patches and d is the dimension of each
patch. Our method considers three segmentation variants, as shown in Fig. 2:

Folding involves reshaping the original embeddings e into a sequence of equally-sized,
smaller patches. Formally,

pat(·) : pi,j = ei∗d+j (2)

Trainable Segmentation employs a set of mapping vectors v with adaptable parameters,
enabling the model to learn and optimize the mapping function during training. This
function can be written as:

pat(·) : pi,j = ui,j ⊙ e (3)

where ui,j are trainable vectors.

Frozen Segmentation utilizes the function with fixed parameters, precluding updates
during the training process. Notably, the frozen Segmentation function comprises a set
of matrices populated with mutually orthogonal vectors. This design choice aims to
facilitate the generation of embedding patches that capture distinct aspects of an entity or
relation, thereby enhancing the model’s ability to represent diverse features. The patches
are generated by:

pat(·) : pi,j = ui,j ⊙ e ,where ui,j ⊙ ui,k = 0 for all j, k (4)

The value of ui,j is obtained from the orthogonal matrix Ui, which is generated through
singular value decomposition (SVD) of a randomly initialized matrix Mi. i.e.,

Mi = UiΣV ⊤i (5)
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Cross-Attention Patch Encoder. After segmenting entity and relation embedding into
patches, we then aggregate these patches together via Cross-Attention Patch Encoder
which is based on a Siamese-Transformer architecture. We will discuss its details below.

Positional Embedding. The original Transformer model encodes them with either fixed
or trainable positional encoding to preserve ordering information. However, unlike visual
patches from images or words from the text, in the PatReFormer model, the patches
from embeddings do not hold any much spatial information (i.e., the values in the first
and last dimension alone do not carry particular semantic meaning). We thus remove the
positional embedding in PatReFormer. We verify the effectiveness of this design in
Section 5.

Cross-Attention Layer. Our proposed cross-attention layer process the entity and relation
patches interactively with two separated attention modules:

hi
h =

{
MHAi

ER(h
i−1
h ,hi−1

r ,hi−1
r ) i > 0

pat(eh) i = 0
(6)

hi
r =

{
MHAi

RE(h
i−1
r ,hi−1

h ,hi−1
h ) i > 0

pat(er) i = 0
(7)

where hi
h,h

i
r denote hidden representation of the i-th layer for head entity and relation

respectively. MHAER and MHARE denotes Entity-to-Relation and Relation-to-Entity
Attention module respectively. Both modules are based on the multi-head attention
(MHA) mechanism, though they have different sets of parameters and inputs. The MHA
module operates as follows:

MHA(Q,K, V ) = Concat(head1,head2, · · · ,headH)W o, (8)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ) (9)

WQ
i ∈ Rd×ds , WK

i ∈ Rd×ds , WV
i ∈ Rd×ds are projection matrix. ds = d/H where

H is the predefined number of attention heads. Attention(·) is the scaled dot-product
attention module:

Attention(Q,K, V ) = softmax(
QK⊺

√
d

)V (10)

where Q ∈ RN×d, K ∈ RM×d, V ∈ RM×d, and N and M denote the lengths of
queries and keys (or values).

Position-wise Feed-Forward Network Layer. The position-wise feed-forward network
(FFN) refers to fully connected layers, which perform the same operation on each
position of the input independently.

FFN(X) = ReLU(XW1 + b1)W2 + b2 (11)

where X is the output of the Cross-Attention Layer i.e., hi
h or hi

r. W1 ∈ Rd×df ,
b1 ∈ Rdf , W2 ∈ Rdf×d, b2 ∈ Rd are trainable weights and bias. To facilitate the
optimization on deep networks, PatReFormer employs a residual connection [29] and
Layer Normalization [30] on Corss-Attention Layer and FFN.
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Similarity Scorer. We employ a scoring function to evaluate the relevance between the
output from the Cross-Attention Encoder and the target entity embedding. Specifically,
we concatenate the hidden representations obtained from the two Transformers sub-
modules and project them back to the entity dimension using a linear layer.

e′ = Concat(Xe, Xr)Wo + bo (12)

In this context, Wo ∈ R(de+dr)×de , bo ∈ Rde are weights and bias of the linear layer,
respectively. · is the operation to reshape Transformer output into a vector. Subsequently,
we compute the dot product of the projected vector e′ and the target entity embedding
et. A sigmoid function is then applied to the result to ensure the final output falls within
the [0, 1] range.This scorer can be expressed as:

s = Sigmoid(e′ ⊙ et) (13)

Algorithm 1 provides a full procedure of our proposed PatReFormer method.

Algorithm 1 PatReFormer for Computing the Score of a Triple in a KG
Input: Embedding for entities and relations, E and R; head entity h, relation r and tail entity t; tokenization function tok(·)
Output: the score of triple (h, r, t)
1: eh, er, et ← E.get(h), R.get(r), E.get(t) # get embeddings for h, r and t
2: eh ← tok(eh)
3: er ← tok(er)
4: for i = 1 to L do
5: eh ← LayerNorm(MHA(eh, er, er) + eh)
6: eh = LayerNorm(FFN(eh) + eh)
7: er ← LayerNorm(MHA(er, eh, eh) + er)
8: er = LayerNorm(FFN(er) + er)
9: end for
10: e′ ← Concat(eh, er)Wo + bo
11: s← Sigmoid(e′ ⊙ et)
12: return s

3.3 Training and Inference

For training, we leverage the standard binary cross entropy loss with label smoothing:

LBCE = − 1

N

N∑
i=1

[yi log(si) + (1− yi) log(1− si)] (14)

where pi and yi are the score and label of the i-th training instance respectively. yi ∈
[ϵ, 1− ϵ], where ϵ is the label smoothing value. For inference, PatReFormer computes
the scores of the query (h, r, ?) for every possible entities and rank them based on the
corresponding scores. More details are presented in Section 4.1.

4 Experimental Results

In this section, we evaluate PatReFormer against various baselines in the KGC task
on multiple benchmark KGs.
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4.1 Experimental Setup

Dataset. Our proposed method is evaluated on four publicly available benchmark
datasets: FB15K-237 [19], WN18RR [8], YAGO37 [20] and DB100K [21]. A summary
of these datasets is provided in Table 1. FB15K-237 and WN18RR are widely-used
benchmarks derived from FB15K and WN18 [1], respectively. They are free from the
inverting triples issue. FB15K-237 and WN18RR were created by removing the inverse
relations from FB15K and WN18 to address this issue. DB100K and YAGO37 are two
large-scale datasets. DB100K was generated from the mapping-based objects of core
DBpedia [22], while YAGO37 was extracted from the core facts of YAGO3 [23].

Table 1: Statistics of datasets.
Dataset #Ent #Rel #Train #Valid #Test

WN18RR 40, 943 11 86, 835 3, 034 3, 134
FB15K-237 14, 541 237 272, 115 17, 535 20, 466
DB100K 99, 604 470 597, 572 50, 000 50, 000
YAGO37 123, 189 37 989, 132 50, 000 50, 000

Evaluation protocol. Our experiment follows the filtered setting proposed in [1]. Specif-
ically, for each test triple (h, r, t), two types of triple corruption are considered, i.e., tail
corruption (h, r, ?) and (t, r−1, ?). Every possible candidate in the knowledge graph
is used to replace the entity, forming a set of valid and invalid triples. The goal is to
rank the test triple among all the corrupted triples. In the filtered setting, any true triples
observed in the train/validation/test set except the test triple (h, r, t) are excluded during
evaluation. The evaluation metrics include the mean reciprocal rank (MRR) and the
proportion of correct entities ranked in the top n (H@n) for n = 1, 3, 10. The evaluation
is performed over all test triples on both types of triple corruption.

Table 2: Optimal hyperparameters for various KGC benckmarks
η L de dr p1 p2 p3

WN18RR 1e-3 2 100 5000 0.1 0.1 0.4
FB15K-237 1e-3 12 100 3000 0.3 0.1 0.4
DB100K 5e-4 4 200 5000 0.1 0.1 0.4
YAGO37 1e-4 4 200 1000 0.1 0.1 0.1

Implementation details. We implement PatReFormer in PyTorch4. In this experiment,
we fix mini-batch size B to 256, Transformer dimensions d to 50, and label smoothing
value ϵ to 0.1. The other hyper-parameters are tuned via grid search. Specifically, we
select learning rate η from {1e-4, 5e-4, 1e-3}, number of layers L from {2, 4, 12}, entity

4 https://pytorch.org/

https://pytorch.org/
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Table 3: Experimental results of baseline models on FB15K-237, WN18RR.
FB15K-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Non-Transformer-Based Methods
TransE [1] .279 .198 .376 .441 .243 .043 .441 .532
DistMult [2] .241 .155 .263 .419 .430 .390 .440 .490
ComplEx [3] .247 .158 .275 .428 .440 .410 .460 .510
R-GCN [4] .249 .151 .264 .417 - - - -
SACN [5] .350 .260 .390 .540 .470 .430 .480 .540
ConvR [6] .350 .261 .385 .528 .475 .443 .489 .537
RotatE [7] .338 .241 .375 .533 .476 .428 .492 .571
ConvE [8] .325 .237 .356 .501 .430 .400 .440 .520
InteractE [9] .354 .263 - .535 .463 .430 - .528
AcrE [10] .358 .266 .393 .545 .459 .422 .473 .532

Transformer-based methods
KG-BERT [11] - - - .420 .216 .041 .302 .524
MTL-KGC [12] .267 .172 .298 .458 .331 .203 .383 .597
StAR [13] .296 .205 .322 .482 .401 .243 .491 .709
GenKGC [14] - .192 .355 .439 - .287 .403 .535

PatReFormer (ours) .364 .271 .400 .551 .480 .439 .499 .558

embedding size de {100, 200}, relation embedding size dr {1000, 3000, 5000}. All
dropout ratios, i.e., p1 on embedding patches, p2 on Cross-Attention Encoder and p3 on
the linear layer in Similarity Scorer, are tuned in {0.1, 0.2, 0.3, 0.4}. We use Adam [18]
to optimize our model. On each dataset, we select the optimal configuration according to
the best MRR on the validation set within 2500 epochs. The optimal configurations of
PatReFormer on the four datasets are listed in Table 2.

4.2 Experimental Results

Table 3 presents a comprehensive comparison of our proposed PatReFormer model,
against the baseline models on two popular FB15K-237 and WN18RR benchmarks.
Our experimental results indicate that PatReFormer is highly competitive against the
state-of-the-art models. Specifically, PatReFormer achieves improvements of 0.009
in MRR and 0.6% in H@10 compared to the previous models used on WN18RR. On
WN18RR, PatReFormer obtains better results in terms of MRR (0.480 vs. 0.476) and
H@3 (0.499 vs. 0.492) and is competitive in the H@10 and H@1 metrics. We attribute
this discrepancy to the fact that the WN18RR dataset is a lexicon knowledge graph
that relies heavily on textual information. As a result, the KGC models that incorporate
pre-trained language models, such as StAR and MTL-KGC, achieve better performance
than PatReFormer in those metrics.

To further verify the effectiveness of PatReFormer on larger KG, we evalu-
ate our method on DB100K and YAGO37. Table 4 presents the performance com-
parison of PatReFormer with other baseline KGC models. On both benchmarks,
PatReFormer outperforms existing methods on all evaluation criteria. In particular,
PatReFormer demonstrates superiority on YAGO37 with a significant relative im-
provement of 15.2% (0.523 vs 0.454) and 5.5% (0.656 vs 0.622) in MRR and H@10
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Table 4: Experimental results of several models evaluated on DB100K, YAGO37.
DB100K YAGO37

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE [1] .111 .016 .164 .270 .303 .218 .336 .475
DistMult [2] .233 .115 .301 .448 .365 .262 .411 .575
HolE [15] .260 .182 .309 .411 .380 .288 .420 .551
ComplEx [3] .242 .126 .312 .440 .417 .320 .471 .603
Analogy [16] .252 .142 .323 .427 .387 .302 .426 .556
SEEK [17] .338 .268 .370 .467 .454 .370 .498 .622
AcrE [10] .413 .314 .472 .588 - - - -

PatReFormer (ours) .436 .353 .479 .589 .523 .449 .567 .656

respectively. These findings indicate the feasibility and applicability of PatReFormer
on real-world large-scale knowledge graphs.

5 Analysis

In this section, we investigate PatReFormer from various perspectives. In the first
place, we show the effectiveness of the design choices in PatReFormer. We then show
that PatReFormer is capable of capturing more knowledge via a large embedding
dimension. Finally, we demonstrate the advantages of PatReFormer in complex
knowledge relations. All experiments are conducted on FB15K-237.

5.1 Impact of Cross Attention

In this section, we aim to examine the effectiveness of cross-attention in our proposed
model by comparing it with two variants: 1) full self-attention, in which entity and
relation patches are combined together before being fed into the model, and full self-
attention is applied on the combined input; and 2) separate self-attention, in which each
Transformer conducts self-attention on entity and relation patches independently before
concatenating their results in the Similarity Scorer. The experimental results demonstrate
that our proposed cross-attention method outperforms both the full self-attention and
separate self-attention variants. We hypothesize that the cross-attention mechanism only
learns to connect patches from different embeddings (i.e., patches from the same embed-
ding never interact with each other), avoiding unnecessary interference from a single
embedding. This could be the primary reason why cross-attention outperforms the full
self-attention variant. Furthermore, the separate self-attention variant lacks interaction
between entities and relations, which could explain the significant performance drop.

5.2 Impact of Positional Encoding

The original Transformer model [24] involves positional encoding to convey positional
information of sequential tokens. To examine the impact of positional encoding on
PatReFormer, we conduct an experiment with two variants: 1) trainable positional
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Table 5: Analysis for model structure on FB15K-237. Att. denotes attention.
MRR H@1 H@3 H@10

PatReFormer .3640 .2708 .3997 .5506
Full Self-Att. .3599↓.0041 .2656↓.0052 .3966↓.0031 .5476↓.0030
Sep. Self-Att. .3387↓.0253 .2503↓.0205 .3698↓.0299 .5161↓.0345

encoding (TPE) and 2) fixed positional encoding (FPE). Our experimental results demon-
strate that the model without positional encoding (PatReFormer) outperforms the
other two variants. We believe that this is due to the nature of embeddings patches, which
inherently capture the features of entities or relations in a non-sequential manner. As a
result, integrating positional encoding into the model introduces extraneous positional
information, causing a decline in performance.

Table 6: Analysis for positional encoding (PE) on FB15K-237. Our proposed
PatReFormer does not apply PE.

Models MRR H@1 H@3 H@10

PatReFormer .3640 .2708 .3997 .5506
w/ TPE .3354↓.0286 .2474↓.0234 .3660↓.0337 .5107↓.0399
w/ FPE .2580↓.1060 .1897↓.0811 .2789↓.1208 .3907↓.1599

5.3 Impact of Segmentation

In this section, we explore the impact of segmentation on our proposed model, specifi-
cally examining the performance without using segmentation, and employing folding,
trainable, and frozen segmentation. Our experimental results in Table 7 present that the
utilization of segmentation yields a substantial performance improvement. With respect
to the segmentation methods, frozen segmentation outperforms the other two variants.
We believe this is due to the orthogonal vectors employed in frozen segmentation, which
enhance the model’s capacity to discern features of embeddings from distinct perspec-
tives. Conversely, trainable segmentation, which allows parameters freely update during
training, may face difficulties in achieving this. These findings emphasize the importance
of selecting segmentation variants in the context of knowledge graph completion tasks.
The superior performance of frozen segmentation suggests that these orthogonal vectors
can be advantageous in extracting diverse features from entity and relation embeddings.

Table 7: Analysis for tokenization variants on FB15K-237.
MRR H@1 H@3 H@10

PatReFormer .3640 .2708 .3997 .5506
w/o Seg. .3501↓.0139 .2592↓.0116 .3850↓.0147 .5316↓.0190
Folding Seg. .3623↓.0017 .2695↓.0013 .3979↓.0018 .5488↓.0018
Trainable Seg. .3572↓.0068 .2642↓.0066 .3936↓.0061 .5433↓.0073
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5.4 Effectiveness of PatReFormer via a Large Relation Embedding Dimension

In a typical KG, the number of relations is much less than the number of entities. Thus, we
hypothesize that the KGC models that can effectively handle a large relation embedding
dimension should achieve superior KGC performance. We verify this hypothesis in this
section. Fig. 3 shows a clear performance increasing trend for PatReFormer as the
length of relation embeddings increases. However, the other baseline KGC models, such
as TransE, ConvE, and RotatE, do not deliver similar improvement; RotatE even suffers
from performance delegations after the embedding dimension increases. This result
shows that PatReFormer could capture more knowledge by using a large embedding
dimension, while other methods cannot due to their insufficient modeling expressiveness.
Such ability allows PatReFormer to capture more knowledge for relation embeddings
and achieve better performance.

Fig. 3: Analysis of relation embedding size on FB15K-237

5.5 Analysis on Different Types of Relations

In this section, we analyze the performance of different types of relations for various
models: TransE, ConvE, RotatE and PatReFormer. To categorize the relations, we
considered the average number of tails per head and heads per tail, grouping them into
four distinct types: 1-1 (one-to-one), 1-N (one-to-many), N-1 (many-to-one), and N-N
(many-to-many). The results presented in Table 8 demonstrate that our PatReFormer
model outperforms the other models in handling more complex relation types, such as
1-N, N-1, and N-N. This indicates that the increased interaction in our model allows
it to capture intricate relationships more effectively. We note that TransE and ConvE
perform better for simpler one-to-one relations. We believe there could be two reasons
behind this phenomenon: 1) TransE and ConvE are intrinsically adept at representing
simple relations (i.e., one-to-one), and 2) the limited number of evaluation instances
for this category might result in biased results. Despite this, this experiment verifies the
strength of our proposed PatReFormer model in modeling complex relation types
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and highlights its potential applicability to a wide range of more complicated KGC tasks.

Table 8: Experimental results by relation categories for KGC methods on FB15K-237.
TransE ConvE RotatE PatReFormer

#triples MRR H@10 MRR H@10 MRR H@10 MRR H@10

1-1 192 .4708 .5520 .4384 .5546 .3315 .5078 .3339 .5625
1-N 1,293 .2388 .3650 .2532 .3789 .2719 .4017 .2828 .4203
N-1 4,185 .3975 .4972 .4151 .5187 .4207 .5168 .4647 .5698
N-N 14,796 .2877 .5063 .3133 .5315 .3167 .5337 .3432 .5564

6 Conclusion

In this paper, motivated by the recent advances in Transformers, we propose a novel
Transformer-based Patch Refinement model PatReFormer for knowledge graph com-
pletion. PatReFormer includes three main components: Embedding Segmentation,
Cross-Attention Encoder, and Similarity Scorer. We first segment the knowledge graph
embeddings into patches and then apply a Transformer-based cross-attention encoder to
model interaction between entities and relations. Finally, the Similarity Scorer combines
the encoded representations to compute the similarity between inputs and target entities.
The experiments on four benchmark datasets (WN18RR, FB15k-237, DB100K and
YAGO37) show that our proposed PatReFormer outperforms existing state-of-the-art
knowledge graph completion (KGC) approaches. These results validate the effectiveness
of our approach and highlight the potential advantages of incorporating patch-based
embeddings and cross-attention mechanisms in such tasks.
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