Skip to main content

Joint Embedding of Local Structures and Evolutionary Patterns for Temporal Link Prediction

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14177))

Included in the following conference series:

  • 739 Accesses

Abstract

Link prediction tackles the prediction of missing facts in an incomplete knowledge graph (KG) and has been widely explored in reasoning and information retrieval. The vast majority of existing methods perform link prediction on static KGs, with the assumption that the relational facts are generally correct. However, some facts may not be universally valid, as they tend to evolve. Despite the prevalence of temporal knowledge graphs (TKGs) with evolving facts, the studies on such data for temporal link prediction are still far from resolved. In this paper, we propose SiepNet, a novel graph neural network for temporal link prediction, driven by local Structural Information and Evolutionary Patterns. Specifically, SiepNet captures the local structural information based on a relation-aware GNN architecture, and incorporates temporal attention to model long- and short-range historical dependencies hidden in TKGs. Moreover, SiepNet integrates local structures and evolutionary patterns to enhance the semantic representation of evolving facts in TKGs. The extensive experiments on five real-world TKG datasets demonstrate the effectiveness of our approach SiepNet in temporal link prediction, compared with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Neural Information Processing Systems (NIPS), Lake Tahoe, America, pp. 1–9. ACM (2013)

    Google Scholar 

  2. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Gated feedback recurrent neural networks. In: International Conference on Machine Learning, pp. 2067–2075. PMLR (2015)

    Google Scholar 

  3. Dasgupta, S.S., Ray, S.N., Talukdar, P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, pp. 2001–2011. ACL (2018)

    Google Scholar 

  4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, USA, pp. 1811–1818. AAAI (2018)

    Google Scholar 

  5. García-Durán, A., Dumancic, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, pp. 4816–4821. ACL (2018)

    Google Scholar 

  6. Han, Z., Chen, P., Ma, Y., Tresp, V.: Explainable subgraph reasoning for forecasting on temporal knowledge graphs. In: International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  7. Han, Z., Ding, Z., Ma, Y., Gu, Y., Tresp, V.: Learning neural ordinary equations for forecasting future links on temporal knowledge graphs. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 8352–8364 (2021)

    Google Scholar 

  8. He, Y., Zhang, P., Liu, L., Liang, Q., Zhang, W., Zhang, C.: HIP network: historical information passing network for extrapolation reasoning on temporal knowledge graph. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, (IJCAI), pp. 1915–1921 (2021)

    Google Scholar 

  9. Hinton, G., NitishSrivastava, A., Salakhutdinov, I.R.R.: Improving neural networks by preventing co-adaptation of feature detectors. Comput. Sci. 3(4), 212–223 (2012)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Hu, W., Yang, Y., Cheng, Z., Yang, C., Ren, X.: Time-series event prediction with evolutionary state graph. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 580–588 (2021)

    Google Scholar 

  12. Hui, B., Zhang, L., Zhou, X., Wen, X., Nian, Y.: Personalized recommendation system based on knowledge embedding and historical behavior. Appl. Intell. 52(1), 954–966 (2022)

    Article  Google Scholar 

  13. Jiang, T., et al.: Towards time-aware knowledge graph completion. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, pp. 1715–1724. ACL (2016)

    Google Scholar 

  14. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure inferenceover temporal knowledge graphs. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6669–6683. ACL, Virtual (2020)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (Poster), San Diego, California, USA. Openview (2015)

    Google Scholar 

  16. Lautenschlager, J., Shellman, S., Ward, M.: ICEWS event aggregations. Harvard Dataverse 3 (2015)

    Google Scholar 

  17. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: Companion Proceedings of the the Web Conference 2018, Lyon, France, pp. 1771–1776. ACM (2018)

    Google Scholar 

  18. Leetaru, K., Schrodt, P.A.: GDELT: global data on events, location, and tone, 1979–2012. In: International Studies Association, San Francisco, California, USA, pp. 1–49 (2013)

    Google Scholar 

  19. Li, Z., et al.: Search from history and reason for future: two-stage reasoning on temporal knowledge graphs. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4732–4743, Berkeley Hotel, Bangkok, Thailand. ACL (2021)

    Google Scholar 

  20. Li, Z., et al.: Temporal knowledge graph reasoning based on evolutional representation learning. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 408–417. ACM, Virtual (2021)

    Google Scholar 

  21. Liu, Y., Ma, Y., Hildebrandt, M., Joblin, M., Tresp, V.: TLogic: temporal logical rules for explainable link forecasting on temporal knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 4120–4127 (2022)

    Google Scholar 

  22. Park, N., Liu, F., Mehta, P., Cristofor, D., Faloutsos, C., Dong, Y.: EvoKG: jointly modeling event time and network structure for reasoning over temporal knowledge graphs. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 794–803 (2022)

    Google Scholar 

  23. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  24. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, Banff, Alberta, Canada, pp. 697–706. ACM (2007)

    Google Scholar 

  25. Sun, H., Zhong, J., Ma, Y., Han, Z., He, K.: Timetraveler: reinforcement learning for temporal knowledge graph forecasting. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Barceló Bávaro Convention Centre, Punta Cana, Dominican Republic, pp. 8306–8319. ACL (2021)

    Google Scholar 

  26. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: International Conference on Learning Representations, Vancouver, Canada. OpenReview (2018)

    Google Scholar 

  27. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: International Conference on Machine Learning, Sydney, Australia, pp. 3462–3471. PMLR (2017)

    Google Scholar 

  28. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: DyRep: learning representations over dynamic graphs. In: International Conference on Learning Representations, New Orleans, Louisiana, USA. OpenReview (2019)

    Google Scholar 

  29. Ward, M.D., Beger, A., Cutler, J., Dickenson, M., Dorff, C., Radford, B.: Comparing GDELT and ICEWS event data. Analysis 21(1), 267–297 (2013)

    Google Scholar 

  30. Wu, J., Cao, M., Cheung, J.C.K., Hamilton, W.L.: TeMP: temporal message passing for temporal knowledge graph completion. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5730–5746 (2020)

    Google Scholar 

  31. Xiao, H., Chen, Y., Shi, X.: Knowledge graph embedding based on multi-view clustering framework. IEEE Trans. Knowl. Data Eng. 33(2), 585–596 (2019)

    Article  Google Scholar 

  32. Yang, B., Yih, S.W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the International Conference on Learning Representations (ICLR) 2015, San Diego, California, USA. OpenReview (2015)

    Google Scholar 

  33. Xu, Y., Ou, J., Xu, H., Fu, L.: Temporal knowledge graph reasoning with historical contrastive learning. CoRR (2022)

    Google Scholar 

  34. Zhu, C., Chen, M., Fan, C., Cheng, G., Zhang, Y.: Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4732–4740. AAAI, Virtual (2021)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. U2003208 and No. 62172451), the Scientific and Technological Innovation 2030-Major software of New Generation Artificial Intelligence (No. 2020AAA0109601), and the Open Research software of Zhejiang Lab (No. 2022KG0AB01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Long or Liu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, T., Long, J., Yang, L., Li, G., Luo, S., Xiao, M. (2023). Joint Embedding of Local Structures and Evolutionary Patterns for Temporal Link Prediction. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14177. Springer, Cham. https://doi.org/10.1007/978-3-031-46664-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46664-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46663-2

  • Online ISBN: 978-3-031-46664-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics