Skip to main content

Learning to Predict Shortest Path Distance

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14178))

Included in the following conference series:

  • 230 Accesses

Abstract

As graph data emerging in various application e.g., biology, social network, scalable graph methods are required to analyze such data. However, traditional graph algorithms cannot meet the need due to their high complexity of both time and space. In this paper, a machine learning based method is proposed to predict shortest path under the case where complete accuracy is not required. A feed-forward neural network classification model and a regression model are constructed to deal with graphs with discrete path distance and continuous path distance, respectively. In addition, we further improve the above models to adapt the dynamic changes of graph data in the real world. The results on real-world datasets show that the proposed method can approach the shortest distance with lower error rate than the comparison methods. We also evaluated different graph embedding methods and training set construction methods on the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonchi, F., Gionis, A., Gullo, F., Ukkonen, A.: Distance oracles in edge-labeled graphs. In: EDBT, pp. 547–558 (2014)

    Google Scholar 

  3. Guyon, I., et al.: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017 (2017)

    Google Scholar 

  4. Zhao, X., Zheng, H.: Orion: Shortest path estimation for large social graphs. In: WOSN, pp. 1–9 (2010)

    Google Scholar 

  5. Zhao, X., Sala, A., Zheng, H., Zhao, B.Y.: Efficient shortest paths on massive social graphs. In: CollaborateCom, pp. 77–86. ICST / IEEE (2011)

    Google Scholar 

  6. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD, pp. 855–864 (2016)

    Google Scholar 

  7. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)

    Google Scholar 

  8. Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 39(1), 43–62 (1997)

    Article  Google Scholar 

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company (2001)

    Google Scholar 

  10. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. In: FOCS, pp. 719–725 (1990)

    Google Scholar 

  13. Chan, E.P.F., Yang, Y.: Shortest path tree computation in dynamic graphs. IEEE Trans. Comput. 58(4), 541–557 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. D’Emidio, M., Forlizzi, L., Frigioni, D., Leucci, S., Proietti, G.: Hardness, approximability, and fixed-parameter tractability of the clustered shortest-path tree problem. J. Comb. Optim. 38(1), 165–184 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pallottino, S., Scutellà, M.G.: Dual algorithms for the shortest path tree problem. Networks 29(2), 125–133 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rizi, F.S., Schlötterer, J., Granitzer, M.: Shortest path distance approximation using deep learning techniques. In: ASONAM, pp. 1007–1014 (2018)

    Google Scholar 

  17. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in large networks. In: CIKM, pp. 867–876 (2009)

    Google Scholar 

  19. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 1–44 (2007)

    Article  Google Scholar 

  20. Tu, C., Zhang, W., Liu, Z., Sun, M.: Max-margin DeepWalk: discriminative learning of network representation. In: IJCAI, pp. 3889–3895 (2016)

    Google Scholar 

  21. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition

    Google Scholar 

  23. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR (1), pp. 539–546 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixin Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, Z., Zong, Z., Zhang, J. (2023). Learning to Predict Shortest Path Distance. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14178. Springer, Cham. https://doi.org/10.1007/978-3-031-46671-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46671-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46670-0

  • Online ISBN: 978-3-031-46671-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics