Skip to main content

Individual Functional Network Abnormalities Mapping via Graph Representation-Based Neural Architecture Search

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Abstract

Prenatal alcohol exposure (PAE) has garnered increasing attention due to its detrimental effects on both neonates and expectant mothers. Recent research indicates that spatio-temporal functional brain networks (FBNs), derived from functional magnetic resonance imaging (fMRI), have the potential to reveal changes in PAE and Non-dysmorphic PAE (Non-Dys PAE) groups compared with healthy controls. However, current deep learning approaches for decomposing the FBNs are still limited to hand-crafted neural network architectures, which may not lead to optimal performance in identifying FBNs that better reveal differences between PAE and healthy controls. In this paper, we utilize a novel graph representation-based neural architecture search (GR-NAS) model to optimize the inner cell architecture of recurrent neural network (RNN) for decomposing the spatio-temporal FBNs and identifying the neuroimaging biomarkers of subtypes of PAE. Our optimized RNN cells with the GR-NAS model revealed that the functional activation decreased from healthy controls to Non-Dys PAE then to PAE groups. Our model provides a novel computational tool for the diagnosis of PAE, and uncovers the brain’s functional mechanism in PAE.

Q. Li and H. Dai—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.

References

  1. Jones, K.L., Smith, D.W.: Recognition of the fetal alcohol syndrome in early infancy. Lancet 302, 999–1001 (1973). https://doi.org/10.1016/S0140-6736(73)91092-1

    Article  Google Scholar 

  2. Sandler, A.D.: Brain dysmorphology in individuals with severe prenatal alcohol exposure. J. Dev. Behav. Pediatr. 22, 341 (2001). https://doi.org/10.1097/00004703-200110000-00024

    Article  Google Scholar 

  3. Bandoli, G., et al.: Patterns of prenatal alcohol exposure and alcohol-related dysmorphic features. Alcohol. Clin. Exp. Res. 44, 2045–2052 (2020)

    Article  Google Scholar 

  4. Mattson, S.N., Bernes, G.A., Doyle, L.R.: Fetal alcohol spectrum disorders: a review of the neurobehavioral deficits associated with prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 43, 1046–1062 (2019)

    Article  Google Scholar 

  5. Zhao, S., et al.: A multi-stage sparse coding framework to explore the effects of prenatal alcohol exposure. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 28–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_4

  6. Lv, J., et al.: Assessing effects of prenatal alcohol exposure using group-wise sparse representation of FMRI data. Psychiatry Res. 233, 254–268 (2015). https://doi.org/10.1016/j.gde.2016.03.011

    Article  Google Scholar 

  7. Huang, H., et al.: Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37, 1551–1561 (2018). https://doi.org/10.1109/TMI.2017.2715285

    Article  Google Scholar 

  8. Li, Q., Dong, Q., Ge, F., Qiang, N., Wu, X., Liu, T.: Simultaneous spatial-temporal decomposition for connectome-scale brain networks by deep sparse recurrent auto-encoder. Brain Imaging Behav. 15, 2646–2660 (2021). https://doi.org/10.1007/s11682-021-00469-w

    Article  Google Scholar 

  9. Zhao, Y., et al.: 4D Modeling of fMRI data via spatio-temporal convolutional neural networks (ST-CNN). IEEE Trans. Cognit. Dev. Syst. 12, 451–460 (2020). https://doi.org/10.1109/TCDS.2019.2916916

    Article  Google Scholar 

  10. Zhao, L., et al.: Embedding human brain function via transformer. Presented at the (2022). https://doi.org/10.1007/978-3-031-16431-6_35

  11. Zhao, L., Dai, H., Jiang, X., Zhang, T., Zhu, D., Liu, T.: Exploring the functional difference of Gyri/Sulci via hierarchical interpretable autoencoder. Presented at the (2021). https://doi.org/10.1007/978-3-030-87234-2_66

  12. Yu, X., Zhang, L., Zhao, L., Lyu, Y., Liu, T., Zhu, D.: Disentangling spatial-temporal functional brain networks via twin-transformers (2022)

    Google Scholar 

  13. Li, Q., et al.: Simultaneous spatial-temporal decomposition of connectome-scale brain networks by deep sparse recurrent auto-encoders. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 579–591. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_45

  14. Li, Q., Zhang, W., Zhao, L., Wu, X., Liu, T.: Evolutional neural architecture search for optimization of spatiotemporal brain network decomposition. IEEE Trans. Biomed. Eng. 69, 624–634 (2022). https://doi.org/10.1109/TBME.2021.3102466

    Article  Google Scholar 

  15. Zhang, W., et al.: Identify hierarchical structures from task-based fMRI data via hybrid spatiotemporal neural architecture search net. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 745–753. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_83

  16. Liu, S., Ge, F., Zhao, L., Wang, T., Ni, D., Liu, T.: NAS-optimized topology-preserving transfer learning for differentiating cortical folding patterns. Med. Image Anal. 77, 102316 (2022). https://doi.org/10.1016/j.media.2021.102316

    Article  Google Scholar 

  17. Dai, H., Ge, F., Li, Q., Zhang, W., Liu, T.: Optimize CNN model for FMRI signal classification via Adanet-based neural architecture search. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1399–1403. IEEE (2020). https://doi.org/10.1109/ISBI45749.2020.9098574

  18. Li, Q., Zhang, W., Lv, J., Wu, X., Liu, T.: Neural architecture search for optimization of spatial-temporal brain network decomposition. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 377–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_37

  19. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: International Conference on Learning Representations – ICLR, pp. 1–12 (2019)

    Google Scholar 

  20. Li, Q., Wu, X., Liu, T.: Differentiable neural architecture search for optimal spatial/temporal brain function network decomposition. Med. Image Anal. 69, 101974 (2021). https://doi.org/10.1016/j.media.2021.101974

    Article  Google Scholar 

  21. Wozniak, J.R., et al.: Functional connectivity abnormalities and associated cognitive deficits in fetal alcohol spectrum disorders (FASD). Brain Imaging Behav. 11, 1432–1445 (2017)

    Article  Google Scholar 

  22. Dai, H., et al.: Graph representation neural architecture search for optimal spatial/temporal functional brain network decomposition. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds.) MLMI 2022. LNCS, vol. 13583, pp. 279–287. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21014-3_29

  23. Xu, K., Jegelka, S., Hu, W., Leskovec, J.: How powerful are graph neural networks? In: International Conference on Learning Representations – ICLR, pp. 1–17 (2019)

    Google Scholar 

  24. Santhanam, P., Li, Z., Hu, X., Lynch, M., Coles, C.: Effects of prenatal alcohol exposure on brain activation during an arithmetic task: an fMRI study. Alcohol. Clin. Exp. Res. 33, 1901–1908 (2009)

    Article  Google Scholar 

  25. Graves, A.: Generating Sequences with Recurrent Neural Networks. http://arxiv.org/abs/1308.0850

  26. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. B 67, 301–320 (2005). https://doi.org/10.1037/h0100860

    Article  MathSciNet  MATH  Google Scholar 

  27. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)

    Article  Google Scholar 

  28. Calhoun, V.D., Eichele, T., Pearlson, G.: Functional brain networks in schizophrenia: a review. Front. Hum. Neurosci. 3, 1–12 (2009). https://doi.org/10.3389/neuro.09.017.2009

    Article  Google Scholar 

  29. Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.033

    Article  Google Scholar 

  30. Santhanam, P., Coles, C.D., Li, Z., Li, L., Lynch, M.E., Hu, X.: Default mode network dysfunction in adults with prenatal alcohol exposure. Psychiatry Res Neuroimaging 194, 354–362 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Natural Science Foundation of China (Grant No. 62206024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claire Coles , Xiaoping Hu , Tianming Liu or Dajiang Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Q. et al. (2023). Individual Functional Network Abnormalities Mapping via Graph Representation-Based Neural Architecture Search. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14178. Springer, Cham. https://doi.org/10.1007/978-3-031-46671-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46671-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46670-0

  • Online ISBN: 978-3-031-46671-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics