Skip to main content

SVIM: A Skeleton-Based View-Invariant Method forĀ Online Gesture Recognition

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14179))

Included in the following conference series:

  • 385 Accesses

Abstract

Online gesture recognition is a challenging task in practical application scenarios since the gesture is not always directly in front of the camera. In order to solve the challenges caused by multiple viewpoints of skeleton data, in this paper, we proposed a novel view-invariant method for online skeleton gesture recognition. The whole skeleton sequence data as a point set in our method and a PCA-based view-invariant data preprocessing algorithm is proposed and applied in this paper. We can transform similar skeleton data to relatively stable viewpoints by applying the PCA algorithm according to the similarity of distribution features of the point set, which can ensures the viewpoint stability of our gesture recognition model. We conduct extensive experiments on the NTU RGB+D and Northwestern-UCLA benchmark datasets which contain multiple viewpoints and the results have demonstrated the effectiveness of the method proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., Hu, W.: Channel-wise topology refinement graph convolution for skeleton-based action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13359ā€“13368 (2021)

    Google ScholarĀ 

  2. Cheng, K., Zhang, Y., Cao, C., Shi, L., Cheng, J., Lu, H.: Decoupling GCN with DropGraph module for skeleton-based action recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 536ā€“553. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_32

    ChapterĀ  Google ScholarĀ 

  3. Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., Lu, H.: Skeleton-based action recognition with shift graph convolutional network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 183ā€“192 (2020)

    Google ScholarĀ 

  4. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1110ā€“1118 (2015)

    Google ScholarĀ 

  5. Ghorbel, E., Boutteau, R., Boonaert, J., Savatier, X., Lecoeuche, S.: Kinematic spline curves: a temporal invariant descriptor for fast action recognition. Image Vis. Comput. 77, 60ā€“71 (2018)

    ArticleĀ  Google ScholarĀ 

  6. Ghorbel, E., et al.: A view-invariant framework for fast skeleton-based action recognition using a single RGB camera. In: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 573ā€“582 (2019)

    Google ScholarĀ 

  7. Ji, Y., Xu, F., Yang, Y., Xie, N., Shen, H.T., Harada, T.: Attention transfer (ant) network for view-invariant action recognition. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 574ā€“582 (2019)

    Google ScholarĀ 

  8. Junejo, I.N., Dexter, E., Laptev, I., PĆ©rez, P.: Cross-view action recognition from temporal self-similarities. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 293ā€“306. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_22

    ChapterĀ  Google ScholarĀ 

  9. Korban, M., Li, X.: DDGCN: a dynamic directed graph convolutional network for action recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 761ā€“776. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_45

    ChapterĀ  Google ScholarĀ 

  10. Lee, I., Kim, D., Kang, S., Lee, S.: Ensemble deep learning for skeleton-based action recognition using temporal sliding LSTM networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1012ā€“1020 (2017)

    Google ScholarĀ 

  11. Li, C., Zhong, Q., Xie, D., Pu, S.: Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation (2018)

    Google ScholarĀ 

  12. Li, F., Fujiwara, K., Okura, F., Matsushita, Y.: A closer look at rotation-invariant deep point cloud analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16218ā€“16227 (2021)

    Google ScholarĀ 

  13. Li, S., Li, W., Cook, C., Zhu, C., Gao, Y.: Independently recurrent neural network (indrnn): building a longer and deeper RNN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5457ā€“5466 (2018)

    Google ScholarĀ 

  14. Li, Y., Xia, R., Liu, X.: Learning shape and motion representations for view invariant skeleton-based action recognition. Pattern Recogn. 103, 107293 (2020)

    ArticleĀ  Google ScholarĀ 

  15. Papadakis, A., Mathe, E., Spyrou, E., Mylonas, P.: A geometric approach for cross-view human action recognition using deep learning. In: 2019 11th International Symposium on Image and Signal Processing and Analysis, pp. 258ā€“263 (2019)

    Google ScholarĀ 

  16. Xiaomin, P., Fan Huijie, T.Y.: Action recognition method of spatio-temporal feature fusion deep learning network. Infrared Laser Eng. 47(2), 55ā€“60 (2018)

    Google ScholarĀ 

  17. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010ā€“1019 (2016)

    Google ScholarĀ 

  18. Shao, Z., Li, Y., Zhang, H.: Learning representations from skeletal self-similarities for cross-view action recognition. IEEE Trans. Circuits Syst. Video Technol. 31(1), 160ā€“174 (2020)

    ArticleĀ  Google ScholarĀ 

  19. Si, C., Chen, W., Wang, W., Wang, L., Tan, T.: An attention enhanced graph convolutional LSTM network for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1227ā€“1236 (2019)

    Google ScholarĀ 

  20. Veeriah, V., Zhuang, N., Qi, G.J.: Differential recurrent neural networks for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4041ā€“4049 (2015)

    Google ScholarĀ 

  21. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3D skeletons as points in a lie group. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 588ā€“595 (2014)

    Google ScholarĀ 

  22. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Learning actionlet ensemble for 3D human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 914ā€“927 (2013)

    ArticleĀ  Google ScholarĀ 

  23. Wang, J., Nie, X., Xia, Y., Wu, Y., Zhu, S.C.: Cross-view action modeling, learning and recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2649ā€“2656 (2014)

    Google ScholarĀ 

  24. Xia, L., Chen, C., Aggarwal, J.K.: View invariant human action recognition using histograms of 3D joints. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 20ā€“27 (2012)

    Google ScholarĀ 

  25. Yan, P., Khan, S.M., Shah, M.: Learning 4D action feature models for arbitrary view action recognition. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1ā€“7 (2008)

    Google ScholarĀ 

  26. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 7444ā€“7452 (2018)

    Google ScholarĀ 

  27. Yang, F., Wu, Y., Sakti, S., Nakamura, S.: Make skeleton-based action recognition model smaller, faster and better. In: Proceedings of the ACM Multimedia Asia, pp. 1ā€“6 (2019)

    Google ScholarĀ 

  28. Zhang, P., Lan, C., Zeng, W., Xing, J., Xue, J., Zheng, N.: Semantics-guided neural networks for efficient skeleton-based human action recognition. In: proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1112ā€“1121 (2020)

    Google ScholarĀ 

  29. Zhang, X., Xu, C., Tao, D.: Context aware graph convolution for skeleton-based action recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14321ā€“14330 (2020)

    Google ScholarĀ 

  30. Yi, Z., Shuo, Z., Yuan, L.: View-invariant 3D hand trajectory-based recognition. J. Univ. Electr. Sci. Technol. China 43(1), 60ā€“65 (2014)

    Google ScholarĀ 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No. 2020YFB1313602, The authors thank the reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanfang Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y. et al. (2023). SVIM: A Skeleton-Based View-Invariant Method forĀ Online Gesture Recognition. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14179. Springer, Cham. https://doi.org/10.1007/978-3-031-46674-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46674-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46673-1

  • Online ISBN: 978-3-031-46674-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics