Skip to main content

Self-supervised Multi-view Clustering Framework with Graph Filtering and Contrast Fusion

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14179))

Included in the following conference series:

  • 1063 Accesses

Abstract

With the increasing prevalence of multi-view data in practical applications, multi-view clustering has become popular due to its ability to integrate complementary information from multiple views to enhance clustering accuracy and robustness. However, existing multi-view clustering methods easily suffer from the following limitations: 1) Most existing methods assume that each sample can be well represented in the original data space, but real-world data inevitably contains redundancy and noise; 2) Existing comparative methods have sampling bias when selecting negative samples; 3) The pseudo-labels generated by model iteration are underused. To address these challenges, this paper proposes a self-supervised multi-view clustering framework with graph filtering and contrast fusion named SMCGC. Specifically, SMCGC first eliminates redundancies and noise in the original data through graph filtering and then uses contrast fusion to enhance the discriminative ability of the samples. This approach avoids the potential challenges related to negative sample selection and does not require the construction of positive and negative samples. For pseudo-labels, the framework utilizes self-supervised mechanisms to guide model operation and optimize cluster representation. Extensive experimental results on six benchmark datasets demonstrate the effectiveness of the proposed SMCGC against the existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. In: International Conference on Machine Learning, pp. 1247–1255. PMLR (2013)

    Google Scholar 

  2. Bichot, C.E., Siarry, P.: Graph Partitioning. Wiley (2013)

    Google Scholar 

  3. Bickel, S., Scheffer, T.: Multi-view clustering. In: ICDM, vol. 4, pp. 19–26. Citeseer (2004)

    Google Scholar 

  4. Brbić, M., Kopriva, I.: Multi-view low-rank sparse subspace clustering. Pattern Recogn. 73, 247–258 (2018)

    Article  Google Scholar 

  5. Chen, P., Liu, L., Ma, Z., Kang, Z.: Smoothed multi-view subspace clustering. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds.) NCAA 2021. CCIS, vol. 1449, pp. 128–140. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5188-5_10

    Chapter  Google Scholar 

  6. Cui, G., Zhou, J., Yang, C., Liu, Z.: Adaptive graph encoder for attributed graph embedding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 976–985 (2020)

    Google Scholar 

  7. Du, G., Zhou, L., Li, Z., Wang, L., Lü, K.: Neighbor-aware deep multi-view clustering via graph convolutional network. Inf. Fusion 93, 330–343 (2023)

    Google Scholar 

  8. Du, G., Zhou, L., Yang, Y., Lü, K., Wang, L.: Deep multiple auto-encoder-based multi-view clustering. Data Sci. Eng. 6(3), 323–338 (2021)

    Article  Google Scholar 

  9. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)

    Article  MATH  Google Scholar 

  10. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a K-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    Google Scholar 

  11. Huang, S., Kang, Z., Tsang, I.W., Xu, Z.: Auto-weighted multi-view clustering via kernelized graph learning. Pattern Recogn. 88, 174–184 (2019)

    Article  Google Scholar 

  12. Hwang, S.J., Grauman, K.: Accounting for the relative importance of objects in image retrieval. In: BMVC, vol. 1, p. 5 (2010)

    Google Scholar 

  13. Kang, Z., Zhou, W., Zhao, Z., Shao, J., Han, M., Xu, Z.: Large-scale multi-view subspace clustering in linear time. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4412–4419 (2020)

    Google Scholar 

  14. Ke, G., Hong, Z., Zeng, Z., Liu, Z., Sun, Y., Xie, Y.: CONAN: contrastive fusion networks for multi-view clustering. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 653–660. IEEE (2021)

    Google Scholar 

  15. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, R., Zhang, C., Fu, H., Peng, X., Zhou, T., Hu, Q.: Reciprocal multi-layer subspace learning for multi-view clustering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8172–8180 (2019)

    Google Scholar 

  17. Li, Z., Tang, C., Liu, X., Zheng, X., Zhang, W., Zhu, E.: Consensus graph learning for multi-view clustering. IEEE Trans. Multimedia 24, 2461–2472 (2021)

    Article  Google Scholar 

  18. Liu, L., Chen, P., Luo, G., Kang, Z., Luo, Y., Han, S.: Scalable multi-view clustering with graph filtering. Neural Comput. Appl. 34(19), 16213–16221 (2022)

    Article  Google Scholar 

  19. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Rese. 9(11) (2008)

    Google Scholar 

  20. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, vol. 14 (2001)

    Google Scholar 

  21. Sun, S.: A survey of multi-view machine learning. Neural Comput. Appl. 23, 2031–2038 (2013)

    Article  Google Scholar 

  22. Wang, W., Arora, R., Livescu, K., Bilmes, J.: On deep multi-view representation learning. In: International Conference on Machine Learning, pp. 1083–1092. PMLR (2015)

    Google Scholar 

  23. Wang, Y., Chang, D., Fu, Z., Zhao, Y.: Consistent multiple graph embedding for multi-view clustering. IEEE Trans. Multimedia (2021)

    Google Scholar 

  24. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478–487. PMLR (2016)

    Google Scholar 

  25. Zhan, K., Zhang, C., Guan, J., Wang, J.: Graph learning for multiview clustering. IEEE Trans. Cybern. 48(10), 2887–2895 (2017)

    Article  Google Scholar 

  26. Zhang, C., Hu, Q., Fu, H., Zhu, P., Cao, X.: Latent multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4279–4287 (2017)

    Google Scholar 

  27. Zhang, C., Liu, Y., Fu, H.: AE2-Nets: autoencoder in autoencoder networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2577–2585 (2019)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Program for Young and Middle-aged Academic and Technical Reserve Leaders of Yunnan Province (202205AC160033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Kong, B., Du, G., Bao, C., Zhou, L., Chen, H. (2023). Self-supervised Multi-view Clustering Framework with Graph Filtering and Contrast Fusion. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14179. Springer, Cham. https://doi.org/10.1007/978-3-031-46674-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46674-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46673-1

  • Online ISBN: 978-3-031-46674-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics