Skip to main content

PBCI-DS: A Benchmark Peripheral Blood Cell Image Dataset for Object Detection

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14180))

Included in the following conference series:

  • 441 Accesses

Abstract

Blood testing has always been one of the important methods for disease diagnosis, but currently, blood testing instruments face the problems of long time consumption, complex processes, and limited detection types. Therefore, a blood cell dataset for artificial intelligence is necessary. Peripheral Blood Cell Image Dataset (PBCI-DS) provides a total of 17092 images of 8 categories of peripheral blood cells and corresponding cell labeling files. The purpose of PBCI-DS is to serve as a training model for object detection. The experiment uses four YOLO series models (YOLO-v5s, YOLO-v5l, YOLO-v6, YOLO-v7) and SSD models of deep learning methods to train the database, and compares and evaluates the results to prove the effectiveness and usability of PBCI-DS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acevedo, A., Alférez, S., Merino, A., Puigvĺ, L., Rodellar, J.: Recognition of peripheral blood cell images using convolutional neural networks. Comput. Methods Programs Biomed. 180, 105020 (2019)

    Article  Google Scholar 

  2. Acevedo, A., Merino, A., Alférez, S., Molina, Á., Boldú, L., Rodellar, J.: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems. Data Brief 30 (2020)

    Google Scholar 

  3. Alam, M.M., Islam, M.T.: Machine learning approach of automatic identification and counting of blood cells. Healthc. Technol. Lett. 6(4), 103–108 (2019)

    Article  Google Scholar 

  4. Alférez, S., Merino, A., Bigorra, L., Mujica, L., Ruiz, M., Rodellar, J.: Automatic recognition of atypical lymphoid cells from peripheral blood by digital image analysis. Am. J. Clin. Pathol. 143(2), 168–176 (2015)

    Article  Google Scholar 

  5. Alomari, Y.M., Sheikh Abdullah, S.N.H., Zaharatul Azma, R., Omar, K.: Automatic detection and quantification of WBCS and RBCS using iterative structured circle detection algorithm. Comput. Math. Methods Med. 2014 (2014)

    Google Scholar 

  6. Barger, A.M.: The complete blood cell count: a powerful diagnostic tool. Vet. Clin. Small Anim. Pract. 33, 1207–1222 (2003)

    Article  Google Scholar 

  7. Fujimoto, H., Sakata, T., Hamaguchi, Y., Shiga, S., Tohyama, K.: Flow cytometric method for enumeration and classification of reactive immature granulocyte populations. Cytometry 42(6), 371–378 (2000)

    Article  Google Scholar 

  8. Geissmann, F., Manz, M.G., Jung, S., Sieweke, M.H., Merad, M., Ley, K.: Development of monocytes, macrophages, and dendritic cells. Science 327(5966), 656–661 (2010)

    Article  Google Scholar 

  9. Kaplan, Z.S., Jackson, S.P.: The role of platelets in atherothrombosis. Hematology 2011(1), 51–61 (2011)

    Article  Google Scholar 

  10. Kratz, A., et al.: Digital morphology analyzers in hematology: ICSH review and recommendations. Int. J. Lab. Hematol. 41(4), 437–447 (2019)

    Article  Google Scholar 

  11. LeBien, T.W., Tedder, T.F.: B lymphocytes: how they develop and function. Blood 112(5), 1570–1580 (2008)

    Article  Google Scholar 

  12. Lennon, A.M., Buchanan, A.H., Kinde, I., Warren, A., Honushefsky, A.: Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science 369(6499), eabb9601 (2020)

    Google Scholar 

  13. Li, R., Xiao, X., Ni, S., Zheng, H., Xia, S.: Byte segment neural network for network traffic classification. In: 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pp. 1–10. IEEE (2018)

    Google Scholar 

  14. Lu, X., Kang, X., Nishide, S., Ren, F.: Object detection based on SSD-ResNet. In: 2019 IEEE 6th International Conference on Cloud Computing and Intelligence Systems (CCIS), pp. 89–92. IEEE (2019)

    Google Scholar 

  15. Marone, G., Lichtenstein, L.M., Galli, S.J.: Mast cells and basophils (2000)

    Google Scholar 

  16. Mayadas, T.N., Cullere, X., Lowell, C.A.: The multifaceted functions of neutrophils. Annu. Rev. Pathol. 9, 181–218 (2014)

    Article  Google Scholar 

  17. Montani, F., Marzi, M.J., Dezi, F., Dama, E., Carletti, R.M.: miR-Test: a blood test for lung cancer early detection. JNCI J. Natl. Cancer Inst. 107(6), djv063 (2015)

    Google Scholar 

  18. Newsome, P.N., Cramb, R., Davison, S.M., Dillon, J.F., Foulerton, M.: Guidelines on the management of abnormal liver blood tests. Gut 67(1), 6–19 (2018)

    Article  Google Scholar 

  19. Olorunshola, O.E., Irhebhude, M.E., Evwiekpaefe, A.E.: A comparative study of YOLOv5 and YOLOv7 object detection algorithms. J. Comput. Soc. Inform. 2(1), 1–12 (2023)

    Article  Google Scholar 

  20. Piaton, E., Fabre, M., Goubin-Versini, I., Bretz-Grenier, M.F., Courtade-Saïdi, M.: Recommandations techniques et règles de bonne pratique pour la coloration de may-grünwald-giemsa: revue de la littérature et apport de l’assurance qualité. In: Annales de Pathologie, vol. 35, pp. 294–305. Elsevier (2015)

    Google Scholar 

  21. Shuo, Y., Hui, L., Fangjun, G., Yanqi, Y., Chenyang, L.: Real-time detection algorithm of mask wearing based on YOLOv5 in complex scenes. Comput. Meas. Control 29(12), 188–194 (2021)

    Google Scholar 

  22. Tordjman, R., Delaire, S., Plouët, J., Ting, S., Gaulard, P., Fichelson, S.: Erythroblasts are a source of angiogenic factors. Blood 97(7), 1968–1974 (2001)

    Google Scholar 

  23. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023)

    Google Scholar 

  24. Wei, J., Qu, Y.: Lightweight improvement of YOLOv6 algorithm for small target detection (2023)

    Google Scholar 

Download references

Acknowledgements

We thank B.A. Qiuqi from Foreign Studies College of Northeastern University, China, for her professional English proofreading in this paper. We thank Miss Zixian Li and Mr. Guoxian Li for their important discussion. This work is support by “National Natural Science Foundation of China" (No. 82220108007). PBCI-DS is open available at: https://figshare.com/articles/figure/PBCI-DS_A_Benchmark_Peripheral_Blood_Cell_Image_Dataset_for_Object_Detection/24417049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

You, S. et al. (2023). PBCI-DS: A Benchmark Peripheral Blood Cell Image Dataset for Object Detection. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14180. Springer, Cham. https://doi.org/10.1007/978-3-031-46677-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46677-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46676-2

  • Online ISBN: 978-3-031-46677-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics