Skip to main content

LFD-CD: Peripheral Blood Cells Detection Using a Lightweight Cell Detection Model with Full-Connection and Dropconnect

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14180))

Included in the following conference series:

  • 423 Accesses

Abstract

Blood testing is an important basis for the diagnosis of many diseases. However, the accuracy of detection instruments in hospitals is often not high, and manual detection of blood samples is sometimes necessary. The whole detection process is not only time-consuming, but also limited in terms of the types of detection. The addition of Deep Convolution Neural Network (DCNN) can quickly and accurately detect blood cells. This study designs a Lightweight Cell Detection Model with Full-connection and Dropconnect (LFD-CD) to achieve the detection task of the peripheral blood cell dataset. In the detection of 8 categories, the model is optimized by adding the full connection layer and Dropconnect model, and the accuracy of the LFD-CD results achieves 99.3%. In the comparative experiment, LFD-CD demonstrates higher detection accuracy and faster detection speed than other independent DCNN models. Moreover, the space required for LFD-CD is only 395 MB, which is half the size of the YOLO-v7 model used in the comparison experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acevedo, A., Merino, A., Alférez, S., et al.: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems, vol. 30 (2020)

    Google Scholar 

  2. Alam, M.M., Islam, M.T.: Machine learning approach of automatic identification and counting of blood cells. Healthcare Technol. Lett. 6(4), 103–108 (2019)

    Article  Google Scholar 

  3. Bergamini, B.M., Losi, M., Vaienti, F., et al.: Performance of commercial blood tests for the diagnosis of latent tuberculosis infection in children and adolescents. Pediatrics 123(3), 419–424 (2009)

    Article  Google Scholar 

  4. Chang, D., Lee, J., Heo, J.: Lightweight of onnx using quantization-based model compression. J. Inst. Internet Broadcast. Commun. 21(1), 93–98 (2021)

    Google Scholar 

  5. Chen, A., Li, C., Zou, S., et al.: SVIA dataset: a new dataset of microscopic videos and images for computer-aided sperm analysis. Biocybernetics Biomed. Eng. 42, 204–214 (2022)

    Article  Google Scholar 

  6. Cruz, D., Jennifer, C., Valiente, et al.: Determination of blood components (WBCS, RBCS, and platelets) count in microscopic images using image processing and analysis. In: Proceedings of ICHNITCCEM 2017, pp. 1–7 (2017)

    Google Scholar 

  7. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and f-score, with implication for evaluation. In: Advances in Information Retrieval, pp. 345–359 (2005)

    Google Scholar 

  8. He, J., Li, L., Xu, J., et al.: Relu deep neural networks and linear finite elements. arXiv: 1807.03973 (2018)

  9. Jiang, X., Wang, N., Xin, J., et al.: Learning lightweight super-resolution networks with weight pruning. Neural Netw. 144, 21–32 (2021)

    Article  Google Scholar 

  10. Khan, S.A., Ali Rana, Z.: Evaluating performance of software defect prediction models using area under precision-recall curve (AUC-PR). In: Proceedings of ICACS 2019. pp. 1–6 (2019)

    Google Scholar 

  11. Kratz, A., Lee, S.h., Zini, G., et al.: Digital morphology analyzers in hematology: ICSH review and recommendations. Int. J. Labor. Hematol. 41(4), 437–447 (2019)

    Google Scholar 

  12. Lapsley, M.I., Wang, L., Huang, T.J.: On-chip flow cytometry: where is it now and where is it going? Biomark. Med. 7(1), 75–78 (2013)

    Article  Google Scholar 

  13. Li, C., Li, L., Jiang, H., et al.: Yolov6: A single-stage object detection framework for industrial applications. ArXiv abs/2209.02976 (2022)

    Google Scholar 

  14. Liu, W., Li, C., Rahaman, M.M., et al.: Is the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: from convolutional neural networks to visual transformers. Comput. Biol. Med. 141, 105026 (2022)

    Article  Google Scholar 

  15. Liu, W., Li, C., Xu, N., et al.: CVM-Cervix: a hybrid cervical pap-smear image Classi fication framework using CNN, visual transformer and multilayer perceptron. Pattern Recogn. 130, 108829 (2022)

    Article  Google Scholar 

  16. Loddo, A., Putzu, L., Di Ruberto, C., et al.: A computer-aided system for differential count from peripheral blood cell images, pp. 112–118 (2016)

    Google Scholar 

  17. Montani, F., Marzi, M.J., Dezi, F., et al.: miR-test: a blood test for lung cancer early detection. JNCI: J. Natl. Can. Inst. 107(6), djv063 (2015)

    Google Scholar 

  18. Newsome, P.N., Cramb, R., Davison, S.M., et al.: Guidelines on the management of abnormal liver blood tests. Gut 67(1), 6–19 (2018)

    Article  Google Scholar 

  19. Nguyen, E.H., Yang, H., Deng, R., et al.: Circle representation for medical object detection. IEEE Trans. Med. Imaging 41(3), 746–754 (2022)

    Article  Google Scholar 

  20. Prinyakupt, J., Pluempitiwiriyawej, C.: Segmentation of white blood cells and comparison of cell morphology by linear and naïve bayes classifiers. BioMed. Eng. OnLine 14, 63 (2015)

    Google Scholar 

  21. Tobias, R.R., Carlo De Jesus, L., Mital, M.E., et al.: Faster R-CNN model with momentum optimizer for RBC and WBC variants classification. In: Proceedings of LifeTech 2020, pp. 235–239 (2020)

    Google Scholar 

  22. Tran, T., Kwon, O.H., Kwon, K.R., et al.: Blood cell images segmentation using deep learning semantic segmentation. In: Proceedings of ICECE 2018, pp. 13–16 (2018)

    Google Scholar 

  23. Wan, L., Zeiler, M., Zhang, S., et al.: Regularization of neural networks using dropconnect. In: Proceedings of ICML 2013, vol. 28, pp. 1058–1066 (2013)

    Google Scholar 

  24. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. ArXiv abs/2207.02696 (July 2022)

    Google Scholar 

  25. Wang, S., Ke, Y., Liu, Y., et al.: Establishment and clinical validation of an artificial intelligence yolov51 model for the detection of precancerous lesions and superficial esophageal cancer in endoscopic procedure. Zhonghua Zhong liu za zhi [Chinese Journal of Oncology] 44(5), 395–401 (2022)

    Google Scholar 

  26. Wei, X., Cao, Y., Fu, G., et al.: A counting method for complex overlapping erythrocytes-based microscopic imaging. J. Innov. Opt. Health Sci. 44(06), 1550033 (2015)

    Article  Google Scholar 

  27. Zhang, M.L., Guo, A.X., VandenBussche, C.J.: Morphologists overestimate the nuclear-to-cytoplasmic ratio. Cancer Cytopathol. 124(9), 669–677 (2016)

    Article  Google Scholar 

  28. Zhu, X., Lyu, S., Wang, X., et al.: Tph-yolov5: improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of ICCV 2021, pp. 2778–2788 (2021)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the “National Natural Science Foundation of China” (No. 82220108007). We thank Miss Zixian Li and Mr. Guoxian Li for their important discussion. We thank B.A. Yingying Hou for her proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M. et al. (2023). LFD-CD: Peripheral Blood Cells Detection Using a Lightweight Cell Detection Model with Full-Connection and Dropconnect. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14180. Springer, Cham. https://doi.org/10.1007/978-3-031-46677-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46677-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46676-2

  • Online ISBN: 978-3-031-46677-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics