Skip to main content

Predicting Maize Yields with Satellite Information

  • Conference paper
  • First Online:
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14375))

  • 261 Accesses

Abstract

The United States seems to have become the primary source of global corn production and export, making corn production critical to the economic activities of many countries. Many previous studies provide yield forecasts. Ground-based telemetry via satellites has recently emerged and attempts to predict vegetation indices for yield. However, except vegetation index, we should know more about vegetation area and coverage for overall consideration. Therefore, this study uses four major corn-producing areas in the United States and related data for the past nine years for model training, including multivariate linear regression, partial least squares regression, stepwise regression, and Gaussian kernel support vector regression. The experimental results show that the support vector regression with Gaussian kernel (radial basis function kernel) performs the best, and the R2 value reaches 0.94.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson, D.M.: An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Env. 141, 116–128 (2014). https://doi.org/10.1016/j.rse.2013.10.027

    Article  Google Scholar 

  2. Sakamoto, T.: Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm. ISPRS J. Photogrammetry Remote Sens. 160, 208–228 (2020)

    Article  Google Scholar 

  3. Gao, F., Anderson, M.: Evaluating yield variability of corn and soybean using Landsat-8, Sentinel-2 and Modis in Google Earth Engine. Paper presented at the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (2019)

    Google Scholar 

  4. Zhang, X., Zhang, Q.: Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations. ISPRS J. Photogrammetry Remote Sens. 114, 191–205 (2016)

    Article  Google Scholar 

  5. Huang, J., Wang, H., Dai, Q., Han, D.: Analysis of NDVI data for crop identification and yield estimation. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 7(11), 4374–4384 (2014). https://doi.org/10.1109/JSTARS.2014.2334332

    Article  Google Scholar 

  6. Roy, D.P., et al.: Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014)

    Article  Google Scholar 

  7. Justice, C.O., et al.: The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 36(4), 1228–1249 (1998). https://doi.org/10.1109/36.701075

    Article  Google Scholar 

  8. Drusch, M., et al.: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012). https://doi.org/10.1016/j.rse.2011.11.026

    Article  Google Scholar 

  9. Jordan, C.F.: Derivation of leaf-area index from quality of light on the forest floor. Ecology 50(4), 663–666 (1969)

    Google Scholar 

  10. Rouse, J.W.: Monitoring the vernal advancement of retrogradation of natural vegetation. Type III, final report, greenbelt, MD, p. (1974)

    Google Scholar 

  11. Liu, H.Q., Huete, A.: A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 33(2), 457–465 (1995). https://doi.org/10.1109/TGRS.1995.8746027

    Article  Google Scholar 

  12. Huete, A.: A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Env. 59(3), 440–451 (1997)

    Article  Google Scholar 

  13. Kaufman, Y.J., Tanre, D.: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 30(2), 261–270 (1992). https://doi.org/10.1109/36.134076

    Article  Google Scholar 

  14. Nordberg, M.L., Evertson, J.: Vegetation index differencing and linear regression for change detection in a Swedish mountain range using Landsat TM® and ETM+® imagery. Land Degrad. Dev. 16(2), 139–149 (2005). https://doi.org/10.1002/ldr.660

    Article  Google Scholar 

  15. Prasad, A.K., Chai, L., Singh, R.P., Kafatos, M.: Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 8(1), 26–33 (2006). https://doi.org/10.1016/j.jag.2005.06.002

    Article  Google Scholar 

  16. Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., Shearer, S.: Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput. Electron. Agric. 153, 213–225 (2018). https://doi.org/10.1016/j.compag.2018.07.016

    Article  Google Scholar 

  17. Chen, P., Jing, Q.: A comparison of two adaptive multivariate analysis methods (PLSR and ANN) for winter wheat yield forecasting using Landsat-8 OLI images. Adv. Space Res. 59(4), 987–995 (2017)

    Article  Google Scholar 

  18. Liu, Z.-Y., Huang, J.-F., Wu, X.-H., Dong, Y.-P.: Comparison of vegetation indices and red-edge parameters for estimating grassland cover from canopy reflectance data. J. Integr. Plant Biol. 49(3), 299–306 (2007)

    Article  Google Scholar 

  19. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  20. Aizerman, M.A., Braverman, E.M., Rozonoer, L.I.: Theoretical foundations of the potential function method in pattern recognition learning. Translated from Avtoatika I Telemehanika 25, 821–837 (1964)

    MATH  Google Scholar 

  21. Wold, S., Ruhe, A., Wold, H., Dunn, W.J.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5(3), 735–743 (1984)

    Article  MATH  Google Scholar 

  22. Gleason, C.J., Im, J.: Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens. Environ. 125, 80–91 (2012)

    Article  Google Scholar 

  23. Tsamardinos, I., Rakhshani, A., Lagani, V.: Performance-estimation properties of cross-validation-based protocols with simultaneous hyper-parameter optimization. Int. J. Artif. Intell. Tools 24(05), 1540023 (2015)

    Article  Google Scholar 

  24. Boryan, C., Yang, Z., Mueller, R., Craig, M.: Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto. Int. 26(5), 341–358 (2011)

    Article  Google Scholar 

  25. Pahlevan, N., Chittimalli, S.K., Balasubramanian, S.V., Vellucci, V.: Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems. Remote Sens. Env. 220, 19–29 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank National Science and Technology Council, Taiwan for generously supporting this research through project #112-2410-H-008-017-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Shien Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ratna, S., Hsu, PY., Shih, YS., Cheng, MS., Chen, YC. (2023). Predicting Maize Yields with Satellite Information. In: Huynh, VN., Le, B., Honda, K., Inuiguchi, M., Kohda, Y. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2023. Lecture Notes in Computer Science(), vol 14375. Springer, Cham. https://doi.org/10.1007/978-3-031-46775-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46775-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46774-5

  • Online ISBN: 978-3-031-46775-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics