Skip to main content

Weighted Fuzzy Rules Based on Implicational Quantifiers

  • Conference paper
  • First Online:
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2023)

Abstract

In this paper, we explore the use of General Unary Hypotheses Automaton (GUHA) quantifiers, explicitly implicational quantifiers, for analyzing specific relational dependencies. We discuss their suitability in fuzzy modeling and demonstrate their integration with appropriate fuzzy rules to create a new class of weighted fuzzy rules. This study contributes to the advancement of fuzzy modeling and offers a framework for further research and practical applications.

This research was supported by the Czech Science Foundation project No. 23-06280S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD 1993, pp. 207–216. Association for Computing Machinery, New York, NY, USA (1993). https://doi.org/10.1145/170035.170072

  2. Alcalá, R., Ramón Cano, J., Cordón, O., Herrera, F., Villar, P., Zwir, I.: Linguistic modeling with hierarchical systems of weighted linguistic rules. Int. J. Approx. Reasoning 32(2), 187–215 (2003). https://doi.org/10.1016/S0888-613X(02)00083-X, Soft Computing in Information Mining

  3. Daňková, M.: Approximation of extensional fuzzy relations over residuated lattices. Fuzzy Sets Syst. 161(14), 1973–1991 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. delaOssa, L., Gámez, J.A., Puerta, J.M.: Learning weighted linguistic fuzzy rules by using specifically-tailored hybrid estimation of distribution algorithms. Int. J. Approx. Reasoning 50(3), 541–560 (2009). https://doi.org/10.1016/j.ijar.2008.11.003, Special Section on Bayesian Modelling

  5. Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation: Mathematical Foundations for a General Theory. Springer, Heidelberg (1978). https://doi.org/10.1007/978-3-642-66943-9

  6. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  7. Hájek, P., Holeňa, M., Rauch, J.: The GUHA method and its meaning for data mining. J. Comput. Syst. Sci. 76(1), 34–48 (2010). https://doi.org/10.1016/j.jcss.2009.05.004, Special Issue on Intelligent Data Analysis

  8. Holeňa, M.: Fuzzy hypotheses for GUHA implications. Fuzzy Sets Syst. 98(1), 101–125 (1998). https://doi.org/10.1016/S0165-0114(96)00369-7

    Article  Google Scholar 

  9. Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification systems. In: Ninth IEEE International Conference on Fuzzy Systems. FUZZ-IEEE 2000 (Cat. No. 00CH37063), vol. 1, pp. 59–64 (2000). https://doi.org/10.1109/FUZZY.2000.838634

  10. Ivánek, J.: On the correspondence between classes of implicational and equivalence quantifiers. In: Żytkow, J.M., Rauch, J. (eds.) Principles of Data Mining and Knowledge Discovery, pp. 116–124. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48247-5_13

    Chapter  Google Scholar 

  11. Ivánek, J.: Construction of implicational quantifiers from fuzzy implications. Fuzzy Sets Syst. 151(2), 381–391 (2005). https://doi.org/10.1016/j.fss.2004.07.002

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee, Y.S., Yen, S.J.: Mining utility association rules. In: Proceedings of the 2018 10th International Conference on Computer and Automation Engineering, ICCAE 2018, pp. 6–10. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3192975.3192987

  13. Nanavati, A.A., Chitrapura, K.P., Joshi, S., Krishnapuram, R.: Mining generalised disjunctive association rules. In: Proceedings of the Tenth International Conference on Information and Knowledge Management, CIKM 2001, pp. 482–489. Association for Computing Machinery, New York, NY, USA (2001). https://doi.org/10.1145/502585.502666

  14. Nauck, D.D.: Adaptive rule weights in neuro-fuzzy systems. Neural Comput. Appl. 9, 60–70 (2000)

    Article  Google Scholar 

  15. Ralbovský, M.: Fuzzy GUHA. Ph.D. thesis, Prague University of Economics and Business (2009)

    Google Scholar 

  16. Rauch, J.: Implicational rules. In: Observational Calculi and Association Rules, vol. 469, pp. 81–97. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-11737-4_7

  17. Turunen, E.: GUHA-method in data mining, Pavelka style fuzzy logic, many-valued similarity and their applications in real world problems. In: MTISD 2008 - Methods, Models and Information Technologies for Decision Support Systems, pp. 49–50 (2008)

    Google Scholar 

  18. Turunen, E.: Mathematics Behind Fuzzy Logic. Advances in Soft Computing. Springer, Heidelberg (1999)

    Google Scholar 

  19. Turunen, E., Coufal, D.: Short term prediction of highway travel time using GUHA data mining method. Neural Network World 3–4, 221–231 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Daňková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daňková, M. (2023). Weighted Fuzzy Rules Based on Implicational Quantifiers. In: Huynh, VN., Le, B., Honda, K., Inuiguchi, M., Kohda, Y. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2023. Lecture Notes in Computer Science(), vol 14375. Springer, Cham. https://doi.org/10.1007/978-3-031-46775-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46775-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46774-5

  • Online ISBN: 978-3-031-46775-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics