Skip to main content

Reasoning About Games with Possibilistic Uncertainty

  • Conference paper
  • First Online:
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14375))

  • 265 Accesses

Abstract

Game theory is the mathematical study of strategic interaction among rational agents and has found many applications in economics, politics, logic, AI, and computer science. Because of pervasive uncertainty in game-playing environments, how to deal with uncertainty is also a key issue in game theory. While probability calculus has been the standard theory for uncertainty management in games, information of exact probability assessment may be not available in many realistic situations. In such cases, possibility theory is an alternative tool for modeling uncertainty in games. In past decades, the cross-fertilization between logic and game theory has proved to be very successful. Therefore, the paper is aimed at the integration of possibilistic uncertainty into modal logics for reasoning about games including game logic and coalition logic. We will study syntax and semantics of the integrated logics as well as their reasoning problems.

Supported by NSTC of Taiwan under Grant No. 110-2221-E-001-022-MY3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [9] for the axiomatization of the basic many-valued logic BL.

References

  1. van Benthem, J.: Logical dynamics of information and interaction. Cambridge University Press (2011)

    Google Scholar 

  2. van Benthem, J.: Logic in games. The MIT Press (2014)

    Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge University Press (2001)

    Google Scholar 

  4. Bonanno, G., Dégremont, C.: Logic and game theory. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp. 421–449. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06025-5_15

    Chapter  MATH  Google Scholar 

  5. Chaudhuri, S., Kannan, S., Majumdar, R., Wooldridge, M.: Game theory in AI, logic, and algorithms (dagstuhl seminar 17111). Dagstuhl Reports 7(3), 27–32 (2017)

    Google Scholar 

  6. Chellas, B.: Modal logic : an introduction. Cambridge University Press (1980)

    Google Scholar 

  7. Chen, T., Lu, J.: Probabilistic alternating-time temporal logic and model checking algorithm. In: Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 2, pp. 35–39 (2007)

    Google Scholar 

  8. Doberkat, E.-E.: Towards a probabilistic interpretation of game logic. In: Kahl, W., Winter, M., Oliveira, J.N. (eds.) RAMICS 2015. LNCS, vol. 9348, pp. 43–47. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24704-5_3

    Chapter  Google Scholar 

  9. Hájek, P.: Metamathematics of fuzzy logic. Kluwer Academic Publisher (1998)

    Google Scholar 

  10. Hansen, H.H., Pauly, M.: Axiomatising nash-consistent coalition logic. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 394–406. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45757-7_33

    Chapter  Google Scholar 

  11. Harel, D.: Dynamic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, Vol. II: Extensions of Classical Logic, pp. 497–604. D. Reidel Publishing Company (1984)

    Google Scholar 

  12. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press (2000)

    Google Scholar 

  13. Hodges, W.: Logic and games. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2013 edn. (2013)

    Google Scholar 

  14. van der Hoek, W., Pauly, M.: Modal logic for games and information. In: Blackburn, P., Benthem, J.V., Wolter, F. (eds.) Handbook of Modal Logic, pp. 1077–1148. Elsevier (2007)

    Google Scholar 

  15. Huang, X., Su, K., Zhang, C.: Probabilistic alternating-time temporal logic of incomplete information and synchronous perfect recall. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  16. Michalak, T., Wooldridge, M.: AI and economics. IEEE Intell. Syst. 32(1), 5–7 (2017)

    Article  Google Scholar 

  17. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67149-9

  18. Parikh, R.: Propositional game logic. In: Proceedings of the 24th Annual Symposium on Foundations of Computer Science (FOCS), pp. 195–200. IEEE Computer Society (1983)

    Google Scholar 

  19. Pauly, M.: A modal logic for coalitional power in games. J. Log. Comput. 12(1), 149–166 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pauly, M., Parikh, R.: Game logic - an overview. Stud. Logica. 75(2), 165–182 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Russell, S., Norvig, P.: Artificial intelligence: a modern approach (3rd ed.). Pearson (2010)

    Google Scholar 

  22. Sack, J.: Logics for dynamic epistemic behavioral strategies. In: Yang, S.C.-M., Deng, D.-M., Lin, H. (eds.) Structural Analysis of Non-Classical Logics. LASLL, pp. 159–182. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48357-2_8

    Chapter  MATH  Google Scholar 

  23. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wooldridge, M., Jennings, N.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)

    Article  Google Scholar 

  25. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  26. Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Churn-Jung Liau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liau, CJ. (2023). Reasoning About Games with Possibilistic Uncertainty. In: Huynh, VN., Le, B., Honda, K., Inuiguchi, M., Kohda, Y. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2023. Lecture Notes in Computer Science(), vol 14375. Springer, Cham. https://doi.org/10.1007/978-3-031-46775-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46775-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46774-5

  • Online ISBN: 978-3-031-46775-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics