Abstract
The accuracy-interpretability tradeoff is a significant challenge for Explainable AI systems; if too much accuracy is lost, an explainable system might be of no actual value. We report on the ongoing development of the Deep Convolutional Neuro-Fuzzy Inference System, an XAI algorithm that has to this point demonstrated accuracy on par with existing convolutional neural networks. Our system is evaluated on the Retinal OCT dataset, in which it achieves state-of-the-art performance. Explanations for the system’s classifications based on saliency analysis of medoid elements from the fuzzy rules in the classifier component are analyzed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A layer of neuronal synapses in the retina of the eye [6].
- 2.
A small depression within the neurosensory retina where visual acuity is the highest [6].
- 3.
A thin layer of tissue that is part of the middle layer of the wall of the eye, between the sclera (white outer layer of the eye) and the retina [6].
References
Abayomi-Alli, O.O., Damasevicius, R., Misra, S., Maskeliunas, R., Abayomi-Alli, A.: Malignant skin melanoma detection using image augmentation by oversamplingin nonlinear lower-dimensional embedding manifold. Turk. J. Electr. Eng. Comput. Sci. 29(8), 2600–2614 (2021)
Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain MRI segmentation: state of the art and future directions (2017). https://doi.org/10.1007/s10278-017-9983-4
Amoroso, N., et al.: A roadmap towards breast cancer therapies supported by explainable artificial intelligence. Appl. Sci. 11(11), 4881 (2021)
Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. arXiv preprint arXiv:1711.06104 (2017)
Aviles, A.I., Alsaleh, S.M., Montseny, E., Sobrevilla, P., Casals, A.: A deep-neuro-fuzzy approach for estimating the interaction forces in robotic surgery (2016). https://doi.org/10.1109/FUZZ-IEEE.2016.7737812
Binder, S.: The Macula: Diagnosis, Treatment and Future Trends. Springer Science & Business Media, Vienna (2004). https://doi.org/10.1007/978-3-7091-7985-7
Chahardoli, R., Barbosa, D., Rafiei, D.: Relation extraction with synthetic explanations and neural network. In: 2021 International Symposium on Electrical, Electronics and Information Engineering, pp. 254–262 (2021)
Dhungel, N., Carneiro, G., Bradley, A.P.: The automated learning of deep features for breast mass classification from mammograms. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 106–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_13
Dindorf, C., et al.: Classification and automated interpretation of spinal posture data using a pathology-independent classifier and explainable artificial intelligence (XAI). Sensors 21 (2021). https://doi.org/10.3390/s21186323
Dong, Y., Su, H., Zhu, J., Zhang, B.: Improving interpretability of deep neural networks with semantic information, vol. 2017-January (2017). https://doi.org/10.1109/CVPR.2017.110
Eigner, I., Bodendorf, F., Wickramasinghe, N.: Predicting high-cost patients by machine learning: a case study in an Australian private hospital group (2019). https://doi.org/10.29007/jw6h
Feng, Q., Chen, L., Chen, C.L.P., Guo, L.: Deep fuzzy clustering-a representation learning approach. IEEE Trans. Fuzzy Syst. 28 (2020). https://doi.org/10.1109/TFUZZ.2020.2966173
Gu, D., et al.: Vinet: a visually interpretable image diagnosis network. IEEE Trans. Multimed. 22 (2020). https://doi.org/10.1109/TMM.2020.2971170
Guan, C., Wang, S., Liew, A.W.C.: Lip image segmentation based on a fuzzy convolutional neural network. IEEE Trans. Fuzzy Syst. 28 (2020). https://doi.org/10.1109/TFUZZ.2019.2957708
Gunning, D., Vorm, E., Wang, Y., Turek, M.: Darpa’s explainable AI (XAI) program: a retrospective. Authorea Preprints (2021)
Haykin, S.: Neural Networks and Learning Machines, vol. 3 (2008). 978–0131471399
He, J., Wang, J., Han, Z., Ma, J., Wang, C., Qi, M.: An interpretable transformer network for the retinal disease classification using optical coherence tomography. Sci. Rep. 13(1), 3637 (2023)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
Jafari, R., Razvarz, S., Gegov, A.: Neural network approach to solving fuzzy nonlinear equations using z-numbers. IEEE Trans. Fuzzy Syst. 28 (2020). https://doi.org/10.1109/TFUZZ.2019.2940919
Jang, J., Sun, C., Mizutani, E.: Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [book review]. IEEE Trans. Autom. Control 42 (2005). https://doi.org/10.1109/tac.1997.633847
Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23 (1993). https://doi.org/10.1109/21.256541
John, V., Mita, S., Liu, Z., Qi, B.: Pedestrian detection in thermal images using adaptive fuzzy c-means clustering and convolutional neural networks (2015). https://doi.org/10.1109/MVA.2015.7153177
Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–1131.e9 (2018). https://doi.org/10.1016/J.CELL.2018.02.010
Kermany, D.S., et al.: Large dataset of labeled optical coherence tomography (oct) and chest x-ray images. Mendeley Data 2 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J.13, 8–17 (2015). https://doi.org/10.1016/J.CSBJ.2014.11.005
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Miere, A., et al.: Deep learning-based classification of inherited retinal diseases using fundus autofluorescence. J. Clin. Med. 9 (2020). https://doi.org/10.3390/jcm9103303
Nilsson, N.J.: The Quest for Artificial Intelligence. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511819346
Ovchinnikov, S.: Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets Syst. 40 (1991). https://doi.org/10.1016/0165-0114(91)90048-U
Pekala, M., Joshi, N., Liu, T.Y., Bressler, N.M., DeBuc, D.C., Burlina, P.: Deep learning based retinal oct segmentation. Comput. Biol. Med. 114, 103445 (2019). https://doi.org/10.1016/J.COMPBIOMED.2019.103445
Plis, S.M., et al.: Deep learning for neuroimaging: a validation study. Front. Neurosci. (2014). https://doi.org/10.3389/fnins.2014.00229
Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy, vol. 90 (2016). https://doi.org/10.1016/j.procs.2016.07.014
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead (2019). https://doi.org/10.1038/s42256-019-0048-x
Samhan, B., Crampton, T., Ruane, R.: The trajectory of it in healthcare at HICSS: a literature review, analysis, and future directions. Commun. Assoc. Inf. Syst. 43 (2018). https://doi.org/10.17705/1CAIS.04341
Sarabakha, A., Kayacan, E.: Online deep fuzzy learning for control of nonlinear systems using expert knowledge. IEEE Trans. Fuzzy Syst. 28(7), 1492–1503 (2019)
Schiffman, J.S., Patel, N.B., Cruz, R.A., Tang, R.A.: Optical coherence tomography for the radiologist. Neuroimaging Clin. 25(3), 367–382 (2015)
Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)
Soleymani, A., Asl, A.A.S., Yeganejou, M., Dick, S., Tavakoli, M., Li, X.: Surgical skill evaluation from robot-assisted surgery recordings. In: 2021 International Symposium on Medical Robotics (ISMR), pp. 1–6. IEEE (2021)
Soomro, T., Talks, J.: The use of optical coherence tomography angiography for detecting choroidal neovascularization, compared to standard multimodal imaging. Eye 32(4), 661–672 (2018)
Struyf, A., Hubert, M., Rousseeuw, P.: Clustering in an object-oriented environment. J. Stat. Softw. 1, 1–30 (1997)
Sun, C.T., Jang, J.S.: A neuro-fuzzy classifier and its applications. In: Proceedings of the [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems, pp. 94–98. IEEE (1993)
Szegedy, C., et al.: Going deeper with convolutions, vol. 07-12-June-2015 (2015). https://doi.org/10.1109/CVPR.2015.7298594
Wang, D., Wang, L.: On oct image classification via deep learning. IEEE Photonics J. 11(5), 1–14 (2019)
Wang, H., Ji, Y., Song, K., Sun, M., Lv, P., Zhang, T.: VIT-P: classification of genitourinary syndrome of menopause from oct images based on vision transformer models. IEEE Trans. Instrum. Meas. 70, 1–14 (2021). https://doi.org/10.1109/TIM.2021.3122121
Wen, H., et al.: Towards more efficient ophthalmic disease classification and lesion location via convolution transformer. Comput. Methods Programs Biomed. 220, 106832 (2022)
Yang, J., et al.: Medmnist v2 - a large-scale lightweight benchmark for 2D and 3D biomedical image classification. Sci. Data 10, 41 (2023)
Yeganejou, M.: Interpretable deep convolutional fuzzy networks (2019)
Yeganejou, M., Dick, S.: Classification via deep fuzzy c-means clustering, vol. 2018-July (2018). https://doi.org/10.1109/FUZZ-IEEE.2018.8491461
Yeganejou, M., Dick, S.: Improved deep fuzzy clustering for accurate and interpretable classifiers, vol. 2019-June (2019). https://doi.org/10.1109/FUZZ-IEEE.2019.8858809
Yeganejou, M., Dick, S., Miller, J.: Interpretable deep convolutional fuzzy classifier. IEEE Trans. Fuzzy Syst. 28(7), 1407–1419 (2019)
Yeganejou, M., Kluzinski, R., Dick, S., Miller, J.: An end-to-end trainable deep convolutional neuro-fuzzy classifier. In: 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7. IEEE (2022)
Zhang, Z., Huang, M., Liu, S., Xiao, B., Durrani, T.S.: Fuzzy multilayer clustering and fuzzy label regularization for unsupervised person reidentification. IEEE Trans. Fuzzy Syst. 28 (2020). https://doi.org/10.1109/TFUZZ.2019.2914626
Zheng, Y.J., Chen, S.Y., Xue, Y., Xue, J.Y.: A pythagorean-type fuzzy deep denoising autoencoder for industrial accident early warning. IEEE Trans. Fuzzy Syst. 25 (2017). https://doi.org/10.1109/TFUZZ.2017.2738605
Zwaan, L., Singh, H.: The challenges in defining and measuring diagnostic error. Diagnosis 2 (2015). https://doi.org/10.1515/dx-2014-0069
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yeganejou, M., Keshmiri, M., Dick, S. (2023). Accurate and Explainable Retinal Disease Recognition via DCNFIS. In: Cohen, K., Ernest, N., Bede, B., Kreinovich, V. (eds) Fuzzy Information Processing 2023. NAFIPS 2023. Lecture Notes in Networks and Systems, vol 751. Springer, Cham. https://doi.org/10.1007/978-3-031-46778-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-46778-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46777-6
Online ISBN: 978-3-031-46778-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)