Skip to main content

Theoretical Explanation of Bernstein Polynomials’ Efficiency

  • Conference paper
  • First Online:
Fuzzy Information Processing 2023 (NAFIPS 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 751))

Included in the following conference series:

  • 98 Accesses

Abstract

Many fuzzy data processing problems can be reduced to problems of interval computations. In many applications of interval computations, it turned out to be beneficial to represent polynomials on a given interval \([\underline{x},\overline{x}]\) as linear combinations of Bernstein polynomials \((x-\underline{x})^k\cdot (\overline{x}-x)^{n-k}\). In this paper, we provide a theoretical explanation for this empirical success: namely, we show that under reasonable optimality criteria, Bernstein polynomials can be uniquely determined from the requirement that they are optimal combinations of optimal polynomials corresponding to the interval’s endpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belohlavek, R., Dauben, J.W., Klir, G.J.: Fuzzy Logic and Mathematics: A Historical Perspective. Oxford University Press, New York (2017)

    Book  MATH  Google Scholar 

  2. Berz, M., Hoffstätter, G.: Computation and application of Taylor polynomials with interval remainder bounds. Reliable Comput. 4, 83–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Comput. 4, 361–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berz, M., Makino, K., Hoefkens, J.: Verified integration of dynamics in the solar system. Nonlinear Anal. Theory Methods Appl. 47, 179–190 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garloff, J.: The Bernstein algorithm. Interval Comput. 2, 154–168 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Garloff, J.: The Bernstein expansion and its applications. J. Am. Rom. Acad. 25–27, 80–85 (2003)

    Google Scholar 

  7. Garloff, J., Graf, B.: Solving strict polynomial inequalities by Bernstein expansion. In: Munro, N. (ed.) The Use of Symbolic Methods in Control System Analysis and Design. IEE Control Engineering, London, vol. 56, pp. 339–352 (1999)

    Google Scholar 

  8. Garloff, J., Smith, A.P.: Solution of systems of polynomial equations by using Bernstein polynomials. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds.) Symbolic Algebraic Methods and Verification Methods - Theory and Application, pp. 87–97. Springer, Vienna (2001). https://doi.org/10.1007/978-3-7091-6280-4_9

    Chapter  Google Scholar 

  9. Hoefkens, J., Berz, M.: Verification of invertibility of complicated functions over large domains. Reliable Comput. 8(1), 1–16 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jaulin, L., Kiefer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control, and Robotics. Springer, London (2001). https://doi.org/10.1007/978-1-4471-0249-6

    Book  MATH  Google Scholar 

  11. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  12. Lohner, R.: Einschliessung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen. Ph.D. thesis, Universität Karlsruhe, Karlsruhe, Germany (1988)

    Google Scholar 

  13. Mayer, G.: Interval Analysis and Automatic Result Verification. de Gruyter, Berlin (2017)

    Book  MATH  Google Scholar 

  14. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  15. Nataraj, P.S.V., Arounassalame, M.: A new subdivision algorithm for the Bernstein polynomial approach to global optimization. Int. J. Autom. Comput. 4, 342–352 (2007)

    Article  Google Scholar 

  16. Neumaier, A.: Taylor forms - use and limits. Reliable Comput. 9, 43–79 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nedialkov, N.S., Kreinovich, V., Starks, S.A.: Interval arithmetic, affine arithmetic, Taylor series methods: why, what next? Numer. Algorithms 37, 325–336 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nguyen, H.T., Walker, C.L., Walker, E.A.: A First Course in Fuzzy Logic. Chapman and Hall/CRC, Boca Raton (2019)

    MATH  Google Scholar 

  19. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston, Dordrecht (1999)

    Book  MATH  Google Scholar 

  20. Ray, S., Nataraj, P.S.V.: A new strategy for selecting subdivision point in the Bernstein approach to polynomial optimization. Reliable Comput. 14, 117–137 (2010)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI Includes), and by the AT &T Fellowship in Information Technology. It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478, and by a grant from the Hungarian National Research, Development and Innovation Office (NRDI).

The author is thankful to the anonymous referees for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladik Kreinovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kreinovich, V. (2023). Theoretical Explanation of Bernstein Polynomials’ Efficiency. In: Cohen, K., Ernest, N., Bede, B., Kreinovich, V. (eds) Fuzzy Information Processing 2023. NAFIPS 2023. Lecture Notes in Networks and Systems, vol 751. Springer, Cham. https://doi.org/10.1007/978-3-031-46778-3_11

Download citation

Publish with us

Policies and ethics