Skip to main content

Fuzzy Logic++: Towards Developing Fuzzy Education Curricula Using ACM/IEEE/AAAI CS2023

  • Conference paper
  • First Online:
Fuzzy Information Processing 2023 (NAFIPS 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 751))

Included in the following conference series:

  • 108 Accesses

Abstract

Fuzzy Logic education has been considered part of artificial intelligence, which in many cases, can be found in the electives curricula or, inclusively, at the graduate studies for the past decades. Because of the persistent emergence of computing areas, such as Artificial Intelligence and Machine Learning, Robotics, and others, there is an appetite for recognizing concepts on intelligent systems in undergraduate education. The ACM/IEEE/AAAI Computer Science Curricula, also known as CS2023, has proposed significant changes from the last version CS2013, particularly in artificial intelligence. These proposed recommendations will have an impact in the next ten years in computer science undergraduate education, including fundamentals of computer programming. This work presents the changes that may impact computer science education curricula, particularly the knowledge areas and competencies model that will influence fuzzy logic education and computing. We also present the intersection of knowledge areas in fuzzy logic, especially for explainable AI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi, S.H.R., Shabaninia, F.: A research on employing fuzzy composite concepts based on human reasoning through singleton and non-singleton fuzzification. In: 2011 IEEE International Conference on Information Reuse & Integration, pp. 500–501 (2011)

    Google Scholar 

  2. Bělohlávek, R., Dauben, J.W., Klir, G.J.: Fuzzy Logic and Mathematics: A Historical Perspective. Oxford University Press, Oxford (2017)

    Book  MATH  Google Scholar 

  3. Biglarbegian, M., Melek, W.W., Mendel, J.M.: Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments. IEEE Trans. Ind. Electron. 58(4), 1371–1384 (2011)

    Article  Google Scholar 

  4. Bouchon-Meunier, B.: Fuzzy models in analogy and case-based reasoning. In: NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 1–2 (2009)

    Google Scholar 

  5. Chiu, S., Cheng, J.J.: Automatic generation of fuzzy rulebase for robot arm posture selection. In: NAFIPS/IFIS/NASA 1994. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, pp. 436–440 (1994)

    Google Scholar 

  6. Cohen, K., Bokati, L., Ceberio, M., Kosheleva, O., Kreinovich, V.: Why fuzzy techniques in explainable AI? Which fuzzy techniques in explainable AI? In: Rayz, J., Raskin, V., Dick, S., Kreinovich, V. (eds.) NAFIPS 2021. LNNS, vol. 258, pp. 74–78. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82099-2_7

    Chapter  Google Scholar 

  7. Junior, A.O.C., e Silva, J.P.F.L., Rivera, J.A., Guedes, E.B.: ThinkCarpet: potentializing computational thinking with educational robotics in middle school. In: 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE), pp. 372–377 (2022)

    Google Scholar 

  8. Deng, Y., Chen, Y., Zhang, Y., Mahadevan, S.: Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment. Appl. Soft Comput. 12, 1231–1237 (2012)

    Article  Google Scholar 

  9. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)

    Article  Google Scholar 

  10. Gogoll, J., Müller, J.F.: Autonomous cars: in favor of a mandatory ethics setting. Sci. Eng. Ethics 23, 681–700 (2016). https://doi.org/10.1007/s11948-016-9806-x

    Article  Google Scholar 

  11. Gray, J., Abelson, H., Wolber, D., Friend, M.: Teaching CS principles with app inventor. In: Proceedings of the 50th Annual Southeast Regional Conference, ACM-SE 2012, pp. 405–406. Association for Computing Machinery, New York (2012)

    Google Scholar 

  12. Jora, R.B., Sodhi, K.K., Mittal, P., Saxena, P.: Role of artificial intelligence (AI) in meeting diversity, equality and inclusion (DEI) goals. In: 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), vol. 1, pp. 1687–1690 (2022)

    Google Scholar 

  13. Kasabov, N.K., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10(2), 144–154 (2002)

    Article  Google Scholar 

  14. Kosheleva, O., Villaverde, K.: How Interval and Fuzzy Techniques Can Improve Teaching. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-55993-2

    Book  Google Scholar 

  15. Kumar, A.N., Raj, R.K.: Computer science curricula 2023 (CS2023): community engagement by the ACM/IEEE-CS/AAAI joint task force. In: Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 2, SIGCSE 2023, pp. 1212–1213. Association for Computing Machinery, New York (2023)

    Google Scholar 

  16. Mendel, J.M.: Uncertain Rule-Based Fuzzy Systems, vol. 684. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51370-6

    Book  MATH  Google Scholar 

  17. Nguyen, H.T., Walker, C.L., Walker, E.A.: A First Course in Fuzzy Logic. CRC Press, Boca Raton (2019)

    MATH  Google Scholar 

  18. Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets Syst. 138(2), 221–254 (2003)

    Article  MathSciNet  Google Scholar 

  19. Phillips, P.J., Hahn, C.A., Fontana, P.C., Broniatowski, D.A., Przybocki, M.A.: Four principles of explainable artificial intelligence, Gaithersburg, Maryland, p. 18 (2020)

    Google Scholar 

  20. Popescu, A., Stefan, L.-D., Deshayes-Chossart, J., Ionescu, B.: Face verification with challenging imposters and diversified demographics. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1151–1160 (2022)

    Google Scholar 

  21. Rani, A., Chaudhary, A., Sinha, N., Mohanty, M., Chaudhary, R.: Drone: the green technology for future agriculture. Harit Dhara 2(1), 3–6 (2019)

    Google Scholar 

  22. Sanchez, R., Servin, C., Argaez, M.: Sparse fuzzy techniques improve machine learning. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 531–535 (2013)

    Google Scholar 

  23. Servín, C.: Fuzzy information processing computing curricula: a perspective from the first two-years in computing education. In: Rayz, J., Raskin, V., Dick, S., Kreinovich, V. (eds.) NAFIPS 2021. LNNS, vol. 258, pp. 391–399. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82099-2_35

    Chapter  Google Scholar 

  24. Servin, C., Kreinovich, V.: Towards efficient algorithms for approximating a fuzzy relation by fuzzy rules: case when “and”-and “or”-operation are distributive. In: 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW), pp. 1–7 (2014)

    Google Scholar 

  25. Servin, C., Kreinovich, V., Shahbazova, S.: Ethical dilemma of self-driving cars: conservative solution. In: Shahbazova, S.N., Abbasov, A.M., Kreinovich, V., Kacprzyk, J., Batyrshin, I.Z. (eds.) Recent Developments and the New Directions of Research, Foundations, and Applications. STUDFUZZ, vol. 423, pp. 93–98. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-23476-7_9

    Chapter  Google Scholar 

  26. Servin, C., Muela, G.: A gentle introduction to fuzzy logic in CS I course: using PLTL as a vehicle to obliquely introduce the concept of fuzzy logic (2016)

    Google Scholar 

  27. Thomson, J.J.: The trolley problem. Yale Law J. 94(6), 1395–1415 (1985)

    Article  Google Scholar 

  28. Tizhoosh, H.R.: Opposition-based learning: a new scheme for machine intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC 2006), vol. 1, pp. 695–701 (2005)

    Google Scholar 

  29. Wang, L.-X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22(6), 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  30. Weber, C.: Engineering bias in AI. IEEE Pulse 10(1), 15–17 (2019)

    Article  Google Scholar 

  31. Yung-Jen Hsu, J., Lo, D.-C., Hsu, S.-C.: Fuzzy control for behavior-based mobile robots. In: NAFIPS/IFIS/NASA 1994. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, pp. 209–213 (1994)

    Google Scholar 

  32. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

Partial support for this work was provided by the National Science Foundation under grant DUE-2231333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Servin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Servin, C., Becker, B.A., Eaton, E., Kumar, A. (2023). Fuzzy Logic++: Towards Developing Fuzzy Education Curricula Using ACM/IEEE/AAAI CS2023. In: Cohen, K., Ernest, N., Bede, B., Kreinovich, V. (eds) Fuzzy Information Processing 2023. NAFIPS 2023. Lecture Notes in Networks and Systems, vol 751. Springer, Cham. https://doi.org/10.1007/978-3-031-46778-3_17

Download citation

Publish with us

Policies and ethics