Abstract
In multi-label classification, each instance can belong to multiple labels simultaneously. Different evaluation criteria have been proposed for comparing ground-truth label sets and predictions. Probabilistic multi-label classifiers offer a unique advantage by allowing optimization of different criteria at prediction time, but they have been relatively underexplored due to a shortage of insights into inference complexity and evaluation criteria. To shrink this gap, we present a generic approach for developing polynomial-time inference algorithms for a family of criteria and discuss the potential (dis)advantages of some commonly used criteria. Finally, we envision future work aimed at providing a comprehensive understanding of inference complexity and criteria selection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\llbracket \cdot \rrbracket \) is the indicator function, i.e., \(\llbracket A \rrbracket = 1\) if the predicate A is true and \(=0\) otherwise.
References
Bogatinovski, J., Todorovski, L., Džeroski, S., Kocev, D.: Comprehensive comparative study of multi-label classification methods. Expert Syst. Appl. 203, 117215 (2022)
Cheng, W., Hüllermeier, E., Dembczynski, K.J.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th International Conference on Machine Learning (ICML), pp. 279–286 (2010)
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)
Decubber, S., Mortier, T., Dembczyński, K., Waegeman, W.: Deep f-measure maximization in multi-label classification: a comparative study. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 290–305. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_18
Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and loss minimization in multi-label classification. Mach. Learn. 88, 5–45 (2012)
Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the 17th international joint conference on Artificial intelligence (IJCAI), pp. 973–978 (2001)
Gerych, W., Hartvigsen, T., Buquicchio, L., Agu, E., Rundensteiner, E.A.: Recurrent bayesian classifier chains for exact multi-label classification. In: Proceedings of the 34th International Conference on Neural Information Processing Systems (NeurIPS), vol. 34, pp. 15981–15992 (2021)
Gil-Begue, S., Bielza, C., Larrañaga, P.: Multi-dimensional Bayesian network classifiers: a survey. Artif. Intell. Rev. 54(1), 519–559 (2021)
Lewis, D.D.: Evaluating and optimizing autonomous text classification systems. In: Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 246–254. ACM (1995)
Mortier, T., Wydmuch, M., Dembczyński, K., Hüllermeier, E., Waegeman, W.: Efficient set-valued prediction in multi-class classification. Data Min. Knowl. Disc. 35(4), 1435–1469 (2021)
Nguyen, V.L., Hüllermeier, E.: Multilabel classification with partial abstention: Bayes-optimal prediction under label independence. J. Artif. Intell. Res. 72, 613–665 (2021)
Nguyen, V.L., Hüllermeier, E., Rapp, M., Loza Mencía, E., Fürnkranz, J.: On aggregation in ensembles of multilabel classifiers. In: Proceedings of the 23rd International Conference on Discovery Science (DS), pp. 533–547 (2020)
Nguyen, V.L., Yang, Y., de Campos, C.P.: Probabilistic multi-dimensional classification. In: Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 1522–1533 (2023)
Pillai, I., Fumera, G., Roli, F.: Designing multi-label classifiers that maximize f measures: state of the art. Pattern Recogn. 61, 394–404 (2017)
Powers, D.: Evaluation: from precision, recall and f-factor to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333–359 (2011)
Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)
Waegeman, W., Dembczyński, K., Jachnik, A., Cheng, W., Hüllermeier, E.: On the Bayes-optimality of f-measure maximizers. J. Mach. Learn. Res. 15, 3333–3388 (2014)
Ye, N., Chai, K.M.A., Lee, W.S., Chieu, H.L.: Optimizing f-measures: a tale of two approaches. In: Proceedings of the 29th International Conference on International Conference on Machine Learning (ICML), pp. 1555–1562 (2012)
Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)
Acknowledgments
This work was funded/supported by the Junior Professor Chair in Trustworthy AI (Ref. ANR-R311CHD), and the US Office of Naval Research Global under Grant N62909-23-1-2058.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nguyen, VL., Hoang, XT., Huynh, VN. (2023). Inference Problem in Probabilistic Multi-label Classification. In: Honda, K., Le, B., Huynh, VN., Inuiguchi, M., Kohda, Y. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2023. Lecture Notes in Computer Science(), vol 14376. Springer, Cham. https://doi.org/10.1007/978-3-031-46781-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-46781-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46780-6
Online ISBN: 978-3-031-46781-3
eBook Packages: Computer ScienceComputer Science (R0)