Skip to main content

Inference Problem in Probabilistic Multi-label Classification

  • Conference paper
  • First Online:
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2023)

Abstract

In multi-label classification, each instance can belong to multiple labels simultaneously. Different evaluation criteria have been proposed for comparing ground-truth label sets and predictions. Probabilistic multi-label classifiers offer a unique advantage by allowing optimization of different criteria at prediction time, but they have been relatively underexplored due to a shortage of insights into inference complexity and evaluation criteria. To shrink this gap, we present a generic approach for developing polynomial-time inference algorithms for a family of criteria and discuss the potential (dis)advantages of some commonly used criteria. Finally, we envision future work aimed at providing a comprehensive understanding of inference complexity and criteria selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\llbracket \cdot \rrbracket \) is the indicator function, i.e., \(\llbracket A \rrbracket = 1\) if the predicate A is true and \(=0\) otherwise.

References

  1. Bogatinovski, J., Todorovski, L., Džeroski, S., Kocev, D.: Comprehensive comparative study of multi-label classification methods. Expert Syst. Appl. 203, 117215 (2022)

    Article  Google Scholar 

  2. Cheng, W., Hüllermeier, E., Dembczynski, K.J.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th International Conference on Machine Learning (ICML), pp. 279–286 (2010)

    Google Scholar 

  3. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Decubber, S., Mortier, T., Dembczyński, K., Waegeman, W.: Deep f-measure maximization in multi-label classification: a comparative study. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 290–305. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_18

    Chapter  Google Scholar 

  5. Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and loss minimization in multi-label classification. Mach. Learn. 88, 5–45 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the 17th international joint conference on Artificial intelligence (IJCAI), pp. 973–978 (2001)

    Google Scholar 

  7. Gerych, W., Hartvigsen, T., Buquicchio, L., Agu, E., Rundensteiner, E.A.: Recurrent bayesian classifier chains for exact multi-label classification. In: Proceedings of the 34th International Conference on Neural Information Processing Systems (NeurIPS), vol. 34, pp. 15981–15992 (2021)

    Google Scholar 

  8. Gil-Begue, S., Bielza, C., Larrañaga, P.: Multi-dimensional Bayesian network classifiers: a survey. Artif. Intell. Rev. 54(1), 519–559 (2021)

    Article  Google Scholar 

  9. Lewis, D.D.: Evaluating and optimizing autonomous text classification systems. In: Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 246–254. ACM (1995)

    Google Scholar 

  10. Mortier, T., Wydmuch, M., Dembczyński, K., Hüllermeier, E., Waegeman, W.: Efficient set-valued prediction in multi-class classification. Data Min. Knowl. Disc. 35(4), 1435–1469 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nguyen, V.L., Hüllermeier, E.: Multilabel classification with partial abstention: Bayes-optimal prediction under label independence. J. Artif. Intell. Res. 72, 613–665 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nguyen, V.L., Hüllermeier, E., Rapp, M., Loza Mencía, E., Fürnkranz, J.: On aggregation in ensembles of multilabel classifiers. In: Proceedings of the 23rd International Conference on Discovery Science (DS), pp. 533–547 (2020)

    Google Scholar 

  13. Nguyen, V.L., Yang, Y., de Campos, C.P.: Probabilistic multi-dimensional classification. In: Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 1522–1533 (2023)

    Google Scholar 

  14. Pillai, I., Fumera, G., Roli, F.: Designing multi-label classifiers that maximize f measures: state of the art. Pattern Recogn. 61, 394–404 (2017)

    Article  MATH  Google Scholar 

  15. Powers, D.: Evaluation: from precision, recall and f-factor to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

    MathSciNet  Google Scholar 

  16. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  17. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  18. Waegeman, W., Dembczyński, K., Jachnik, A., Cheng, W., Hüllermeier, E.: On the Bayes-optimality of f-measure maximizers. J. Mach. Learn. Res. 15, 3333–3388 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Ye, N., Chai, K.M.A., Lee, W.S., Chieu, H.L.: Optimizing f-measures: a tale of two approaches. In: Proceedings of the 29th International Conference on International Conference on Machine Learning (ICML), pp. 1555–1562 (2012)

    Google Scholar 

  20. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded/supported by the Junior Professor Chair in Trustworthy AI (Ref. ANR-R311CHD), and the US Office of Naval Research Global under Grant N62909-23-1-2058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu-Linh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, VL., Hoang, XT., Huynh, VN. (2023). Inference Problem in Probabilistic Multi-label Classification. In: Honda, K., Le, B., Huynh, VN., Inuiguchi, M., Kohda, Y. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2023. Lecture Notes in Computer Science(), vol 14376. Springer, Cham. https://doi.org/10.1007/978-3-031-46781-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46781-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46780-6

  • Online ISBN: 978-3-031-46781-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics