Skip to main content

Descriptor-Based Information Systems and Rule Learning from Different Types of Data Sets with Uncertainty

  • Conference paper
  • First Online:
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14376))

  • 373 Accesses

Abstract

We have coped with rule generation from tables (or information systems) and extend this framework to that from different types of data, like heterogeneous, uncertain, time series, clustered, etc. For this new framework, we use the term ‘rule learning’ instead of ‘rule generation.’ We newly specify descriptors, which take the role of words in data sets, and we define a DbIS (Descriptor-based Information System) \(\varOmega \) as the unified format for different data types. We prove one DbIS \(\varOmega \) is convertible to one NIS (Non-deterministic Information System), where we realized the NIS-Apriori system. Thus, we can obtain rules via DbIS and the NIS-Apriori system. Furthermore, we merge two DbISs \(\varOmega _{1}\) and \(\varOmega _{2}\) to one \(\varOmega _{1,2}\) using missing values, and we can inductively merge any number of DbISs. We also estimate some missing values by the self-obtained certain rules and consider the application of DbIS to big data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (Eds.) Proceedings of VLDB 1994, Morgan Kaufmann, pp. 487–499 (1994)

    Google Scholar 

  2. Frank, A., Asuncion, A.: UCI machine learning repository. University of California, School of Information and Computer Science, Irvine, CA (2020). http://mlearn.ics.uci.edu/MLRepository.html. Accessed 7 Jan 2020

  3. Fürnkranz, J., Kliegr, T.: A brief overview of rule learning. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 54–69. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21542-6_4

    Chapter  Google Scholar 

  4. Grzymała-Busse, J.W., Werbrouck, P.: On the best search method in the LEM1 and LEM2 algorithms. In: Orłowska, E. (Ed.) Incomplete Information: Rough Set Analysis, Studies in Fuzziness and Soft Computing, vol. 13, pp. 75–91 (1998)

    Google Scholar 

  5. Jian, Z., Sakai, H., Watada, J., Roy, A., Hassan, M.: An A priori-based data analysis on suspicious network event recognition. In: Roger, B., Carlo, Z., (Eds.) Proceedings of IEEE Big Data, pp. 5888–5896 (2019)

    Google Scholar 

  6. Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83–94 (1963)

    MathSciNet  MATH  Google Scholar 

  7. Lin, T.Y.: Granular Computing: Practices, Theories, and Future Directions. In: Meyers, R. (eds.) Encyclopedia of Complexity and Systems Science, pp. 4339–4355. Springer, New York (2009). https://doi.org/10.1007/978-0-387-30440-3_256

  8. Lipski, W.: On semantic issues connected with incomplete information databases. ACM Trans. Database Syst. 4(3), 262–296 (1979)

    Article  Google Scholar 

  9. Nakata, M., Sakai, H.: Twofold rough approximations under incomplete information. Int. J. Gener. Syst. 42(6), 546–571 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theoret. Comput. Sci. 29(1–2), 27–39 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    Article  MATH  Google Scholar 

  12. Pedrycz, W., Skowron, A., Kreinovich, V.: Handbook of Granular Computing, p. 1116. Wiley, New York (2008)

    Book  Google Scholar 

  13. Sakai, H., Nakata, M.: Rough set-based rule generation and Apriori-based rule generation from table data sets: a survey and a combination. CAAI Trans. Intell. Technol. 4(4), 203–213 (2019)

    Article  Google Scholar 

  14. Sakai, H., Nakata, M., Watada, J.: NIS-Apriori-based rule generation with three-way decisions and its application system in SQL. Inf. Sci. 507, 755–771 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sakai, H.: Execution logs by RNIA software tools. http://www.mns.kyutech.ac.jp/~akai/RNIA

  16. Sakai, H., Nakata, M.: Apriori-based rule generation with three-way decisions for heterogeneous and uncertain data. In: Proceedings of SCIS&ISIS, pp. 1–6 (2022). https://doi.org/10.1109/SCISISIS55246.2022.10001979

  17. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (Ed.) Intelligent Decision Support - Handbook of Advances and Applications of the Rough Set Theory, Kluwer Academic, pp. 331–62 (1992)

    Google Scholar 

  18. Association rule learning, Wikipedia

    Google Scholar 

  19. Wojtusiak, J.: Rule Learning. In: Seel, N.M. (eds.) Encyclopedia of the Sciences of Learning, pp. 2909–2911. Springer, Boston, MA (2012). https://doi.org/10.1007/978-1-4419-1428-6_1347

Download references

Acknowledgment

The authors thank the reviewers for their helpful comments. This work is supported by JSPS (Japan Society for the Promotion of Science) KAKENHI Grant Number JP20K11954.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakai, H., Nakata, M. (2023). Descriptor-Based Information Systems and Rule Learning from Different Types of Data Sets with Uncertainty. In: Honda, K., Le, B., Huynh, VN., Inuiguchi, M., Kohda, Y. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2023. Lecture Notes in Computer Science(), vol 14376. Springer, Cham. https://doi.org/10.1007/978-3-031-46781-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46781-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46780-6

  • Online ISBN: 978-3-031-46781-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics