Skip to main content

Machine Learned KPI Goal Preferences for Explainable AI based Production Sequencing

  • Conference paper
  • First Online:
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14376))

  • 394 Accesses

Abstract

In this paper we show how machine learned KPI goal preference relations based on interactions between KPI goals are used to explain results of an AI algorithm for optimization of real-world production sequences. It is also shown how such algorithms can be both parameterized and reparametrized in an explainable ad-hoc and post-hoc manner. The explanations are also used to manage contradictory and counterfactual optimization effects so that uncertainty in the decision situations before releasing the sequences to production is handled better than if only the pure sequences were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carvalho, D., Pereira, E., Cardoso, J.: Machine learning interpretability: a survey on methods and metrics. Electronics 8, 832, MDPI (2019)

    Google Scholar 

  2. Felix, R.: Optimization of partly conflicting goals in complex resource planning. In: Proceedings of the 8th EUSFLAT Conference, Milano, Italy, pp. 669–674 (2013)

    Google Scholar 

  3. Felix, R.: On separability of preferences and partly consistent induced interacting goals. In: Proceedings of the IFSA-EUSFLAT International Joint Conference, Gijón, Spain (2015)

    Google Scholar 

  4. Felix, R.: Learning of consistent preference relations for decision making and optimization in context of interacting goals. In: Proceedings of the IFSA-EUSFLAT-AGOP International Joint Conference, Bratislava, Slovakia, pp. 266-273.Cooper, M.C. (2021)

    Google Scholar 

  5. Felix. R. The optimization of capacity utilization with a fuzzy decision support model. In: Proceedings EUSFLAT-ESTYLF, Palma de Mallorca, pp. 461–463 (1999)

    Google Scholar 

  6. Fuchigami, H.Y., Rangel, S.: A survey of case studies in production scheduling: analysis and perspectives. J. Computat. Sci. 425–436, Elsevier (2018)

    Google Scholar 

  7. Ghai, B., Liao, V., Zhang, Y., Bellamy, R., Mueller, K: Explainable active learning (XAL): toward AI explanations as interfaces for machine teachers. Proc. ACM Hum. Comput. Interact. 1(1), 28 (2020)

    Google Scholar 

  8. Gordo, A., Almazán, J., Murray, N., Perronnin, F.: LEWIS – Latent Embeddings for Word Images and their Semantics. arXiv:1509.06243

  9. Guidotti, R., Monreale, S., Ruggieri, A., Turini, F., Pedreschi, D, Gianotti, F.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018)

    Google Scholar 

  10. Jeyasothy, A., Laugel, T., Lesot, M., Marsala, C., Detyniecki, M.: Integrating Prior Knowledge in Post-hoc Explanations. arXiv:2204.11634

  11. Kowsari, K., Bari, N., Vichr, R., Goodarzi, F.A.: FSL-BM: fuzzy supervised learning with binary meta-feature for classification. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FICC 2018. AISC, vol. 887, pp. 655–670. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03405-4_46

    Chapter  Google Scholar 

  12. Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., Detyniecki, M.: Comparison-based inverse classification for interpretability in machine learning. In: Medina, J., Ojeda-Aciego, M., Verdegay, J.L., Pelta, D.A., Cabrera, I.P., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2018. CCIS, vol. 853, pp. 100–111. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91473-2_9

    Chapter  Google Scholar 

  13. Mehdiyev, N., Fettke, P.: Explainable artificial intelligence for process mining: a general overview and application of a novel local explanation approach for predictive process monitoring. In: Pedrycz, W., Chen, S.-M. (eds.) Interpretable Artificial Intelligence: A Perspective of Granular Computing. SCI, vol. 937, pp. 1–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64949-4_1

    Chapter  Google Scholar 

  14. Rudolf, G., Felix, R.: KPI-orientierte Optimierung von Produktionssequenzen in der Auto-mobilindustrie und KI-Methoden, Slide 27, VDA Forum Automobillogistik (2019)

    Google Scholar 

  15. Stauder, M., Kühl, N.: AI for in-line vehicle sequence controlling: development and evaluation of an adaptive machine learning artifact to predict sequence deviations in a mixed model production line. Flexible Serv. Manufact. J. 34, 709–747 (2022)

    Google Scholar 

  16. Tahriri, F., Dawal, S.Z., Taha, Z.: Fuzzy mixed assembly line sequencing and scheduling: optimization model using multiobjective dynamic fuzzy GA. Sci. World J. 505207, 20 (2014)

    Google Scholar 

  17. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harvard J. Law Technol. 31, 841–887 (2018)

    Google Scholar 

  18. Wang, K., et al.: Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2591–2600 (2016)

    Google Scholar 

  19. Wang, L., et al.: Active learning via query synthesis and nearest neighbour search. Neuro-computing 147, 426–434 (2014)

    Google Scholar 

  20. Wang, P.: On defining artificial intelligence. J. Artif. Gen. Intell. 10(2) 1–37, Sciendo (2019)

    Google Scholar 

  21. Zhang, R., Chang, P.C., Wu, C.: A hybrid genetic algorithm for the job shop scheduling. Int. J. Product. Econ. 145(1), 38–52 (2013). ISSN 0925–5273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Felix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Felix, R. (2023). Machine Learned KPI Goal Preferences for Explainable AI based Production Sequencing. In: Honda, K., Le, B., Huynh, VN., Inuiguchi, M., Kohda, Y. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2023. Lecture Notes in Computer Science(), vol 14376. Springer, Cham. https://doi.org/10.1007/978-3-031-46781-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46781-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46780-6

  • Online ISBN: 978-3-031-46781-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics