Skip to main content

Effect of Multiple Unmanned Aerial Vehicles on Data Transmission Considering DTN-Based V2V Communication in Urban Area

  • Conference paper
  • First Online:
Advances on Broad-Band and Wireless Computing, Communication and Applications (BWCCA 2023)

Abstract

In this paper, we present the performance of multiple Unmanned Aerial Vehicles (UAVs) and Vehicle-to-Vehicle (V2V) communication in an urban environment. We employ the Epidemic protocol as the communication method to evaluate the dissemination of bundle messages by multiple UAVs and regular vehicles. We consider the urban grid and Tenjin area in Fukuoka City, where UAVs are assumed to move in a vertical direction randomly. From the simulation results, we found that the presence or absence of a UAV had a significant impact on the message delivery probability, especially when the number of vehicles was less than 90. Also, the use of UAVs improves message reachability and storage consumption on complex roads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Recommendation ITU-R P.1411-11: Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. ITU (2019). https://www.itu.int/rec/R-REC-P.1411-11-202109-I/en

  2. Arafat, M.Y., Moh, S.: Location-aided delay tolerant routing protocol in UAV networks for post-disaster operation. IEEE Access 6, 59891–59906 (2018). https://doi.org/10.1109/ACCESS.2018.2875739

    Article  Google Scholar 

  3. Azuma, M., Uchimura, S., Ikeda, M., Barolli, L.: AAR: an adaptive anti-packet recovery approach for improving delay tolerant networking data transfer using UAVs and vehicles. In: Barolli, L. (ed.) 3PGCIC 2022. LNNS, vol. 571, pp. 181–191. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19945-5_18

    Chapter  Google Scholar 

  4. Azuma, M., Uchimura, S., Sako, S., Ikeda, M., Barolli, L.: Performance evaluation of an adaptive anti-packet recovery method considering UAVs and vehicles in an urban scenario. In: Barolli, L. (ed.) IMIS 2022. LNNS, vol. 496, pp. 230–237. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08819-3_23

    Chapter  Google Scholar 

  5. Cao, Y., Jiang, T., Kaiwartya, O., Sun, H., Zhou, H., Wang, R.: Toward pre-empted EV charging recommendation through V2V-based reservation system. IEEE Trans. Syst. Man Cybern.: Syst. 51(5), 3026–3039 (2021). https://doi.org/10.1109/TSMC.2019.2917149

    Article  Google Scholar 

  6. Cerf, V., et al.: Delay-tolerant networking architecture. IETF RFC 4838 (Informational) (2007)

    Google Scholar 

  7. Cui, J., Cao, S., Chang, Y., Wu, L., Liu, D., Yang, Y.: An adaptive spray and wait routing algorithm based on quality of node in delay tolerant network. IEEE Access 7, 35274–35286 (2019). https://doi.org/10.1109/ACCESS.2019.2904750

    Article  Google Scholar 

  8. Dendy, R., Mortensen, D., Zeleznikar, D., Booth, S.: Flexible user radio for lunar missions. In: Proceedings of the IEEE Aerospace Conference 2023, pp. 1–11 (2023). https://doi.org/10.1109/AERO55745.2023.10115724

  9. Henmi, K., Koyama, A.: Hybrid type DTN routing protocol considering storage capacity. In: Barolli, L., Okada, Y., Amato, F. (eds.) EIDWT 2020. LNDECT, vol. 47, pp. 491–502. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39746-3_50

    Chapter  Google Scholar 

  10. Iranmanesh, S., Raad, R., Raheel, M.S., Tubbal, F., Jan, T.: Novel DTN mobility-driven routing in autonomous drone logistics networks. IEEE Access 8, 13661–13673 (2020). https://doi.org/10.1109/ACCESS.2019.2959275

    Article  Google Scholar 

  11. Ito, M., Nishiyama, H., Kato, N.: A novel routing method for improving message delivery delay in hybrid DTN-MANET networks. In: Proceedings of the IEEE Global Communications Conference (GLOBECOM-2013), pp. 72–77 (2013). https://doi.org/10.1109/GLOCOM.2013.6831050

  12. Kawabata, N., Yamasaki, Y., Ohsaki, H.: Hybrid cellular-DTN for vehicle volume data collection in rural areas. In: Proceedings of the IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC-2019), vol. 2, pp. 276–284 (2019). https://doi.org/10.1109/COMPSAC.2019.00048

  13. Lent, R.: Enabling cognitive bundle routing in NASA’s high rate DTN. In: 2022 International Wireless Communications and Mobile Computing (IWCMC), pp. 1323–1328 (2022). https://doi.org/10.1109/IWCMC55113.2022.9824158

  14. Marchese, M., Patrone, F., Cello, M.: DTN-based nanosatellite architecture and hot spot selection algorithm for remote areas connection. IEEE Trans. Veh. Technol. 67(1), 689–702 (2018). https://doi.org/10.1109/TVT.2017.2739298

    Article  Google Scholar 

  15. Nishigami, C., Hayashibara, N.: The probability of encounters of mutual search using lévy walk on unit disk graphs. In: Barolli, L., Miwa, H., Enokido, T. (eds.) NBiS 2022. LNNS, vol. 526, pp. 90–101. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14314-4_9

    Chapter  Google Scholar 

  16. Ramanathan, R., Hansen, R., Basu, P., Hain, R.R., Krishnan, R.: Prioritized epidemic routing for opportunistic networks. In: Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking (MobiOpp 2007), pp. 62–66 (2007). https://doi.org/10.1145/1247694.1247707

  17. Sato, F., Kikuchi, R.: Hybrid routing scheme combining with geo-routing and DTN in VANET. In: Proceedings of the 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2016), pp. 250–255 (2016). https://doi.org/10.1109/IMIS.2016.107

  18. Scenargie: Space-time engineering, LLC. http://www.spacetime-eng.com/

  19. Solpico, D., et al.: Application of the V-HUB standard using LoRa beacons, mobile cloud, UAVs, and DTN for disaster-resilient communications. In: Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC-2019), pp. 1–8 (2019). https://doi.org/10.1109/GHTC46095.2019.9033139

  20. Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of the ACM SIGCOMM workshop on Delay-tolerant networking 2005 (WDTN 2005), pp. 252–259 (2005). https://doi.org/10.1145/1080139.1080143

  21. Tornell, S.M., Calafate, C.T., Cano, J.C., Manzoni, P.: DTN protocols for vehicular networks: an application oriented overview. IEEE Commun. Surv. Tutor. 17(2), 868–887 (2015). https://doi.org/10.1109/COMST.2014.2375340

    Article  Google Scholar 

  22. Vahdat, A., Becker, D.: Epidemic routing for partially-connected ad hoc networks. Technical report, Duke University (2000)

    Google Scholar 

  23. Xu, Y., Zhang, H., Pang, Z., Kang, Y., Su, Y.: Design and implementation of a transport protocol with network coding for delay tolerant underwater acoustic sensor networks. In: OCEANS 2022 - Chennai, pp. 1–4 (2022). https://doi.org/10.1109/OCEANSChennai45887.2022.9775134

  24. Zhao, W., Ammar, M., Zegura, E.: Controlling the mobility of multiple data transport ferries in a delay-tolerant network. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1407–1418 (2005). https://doi.org/10.1109/INFCOM.2005.1498365

  25. Zhao, W., Ammar, M.: Message ferrying: proactive routing in highly-partitioned wireless ad hoc networks. In: The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems 2003, FTDCS 2003. Proceedings, pp. 308–314 (2003). https://doi.org/10.1109/FTDCS.2003.1204352

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tachibana, S., Shiromoto, R., Ikeda, M., Barolli, L. (2024). Effect of Multiple Unmanned Aerial Vehicles on Data Transmission Considering DTN-Based V2V Communication in Urban Area. In: Barolli, L. (eds) Advances on Broad-Band and Wireless Computing, Communication and Applications. BWCCA 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-031-46784-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46784-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46783-7

  • Online ISBN: 978-3-031-46784-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics