Skip to main content

Prospects of UAVs in Agricultural Mapping

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2023)

Abstract

The food security of most rural sectors depends on traditional agricultural practices. Geomatics tools contribute to traditional agricultural practices through Unmanned Aerial Vehicles (UAVs) in smart agriculture, agricultural mapping and improving sustainable agricultural production. The study’s objective is to explore the application of UAVs in agricultural mapping through a literature review of the use of this tool in agriculture. The methodology of this review performs a literary search on the application of UAVs to explore the structure, dynamics and domain of this area of knowledge. Subsequently, the analysis includes scientific contributions, the most relevant authors, evolution of themes and trends in sustainable agriculture. The results show that the countries with the greatest scientific contribution in this area of knowledge are the United States (USA) and China. The predominant themes are monitoring plant phenology/crop detection, status/evaluation of agricultural soils, irrigation applications/water resources and agricultural yield. UAV use, and their fusion with other technologies is a technological trend contributing to agricultural mapping through thematic maps and object-based image analysis in digitising sustainable farming activities and practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navia, J., Mondragon, I., Patino, D., Colorado, J.: Multispectral mapping in agriculture: terrain mosaic using an autonomous quadcopter UAV. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1351–1358. IEEE (2016). https://doi.org/10.1109/ICUAS.2016.7502606

  2. Tsouros, D.C., Bibi, S., Sarigiannidis, P.G.: A review on UAV-based applications for precision agriculture. Information 10, 349 (2019). https://doi.org/10.3390/info10110349

    Article  Google Scholar 

  3. Aslan, M.F., Durdu, A., Sabanci, K., Ropelewska, E., Gültekin, S.S.: A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses. Appl. Sci. 12, 1047 (2022). https://doi.org/10.3390/app12031047

    Article  Google Scholar 

  4. Jakob, S., Zimmermann, R., Gloaguen, R.: The need for accurate geometric and radiometric corrections of drone-borne hyperspectral data for mineral exploration: MEPHySTo—A toolbox for pre-processing drone-borne hyperspectral data. Remote Sens. (Basel) 9, 88 (2017). https://doi.org/10.3390/rs9010088

  5. Christiansen, M., Laursen, M., Jørgensen, R., Skovsen, S., Gislum, R.: Designing and testing a UAV mapping system for agricultural field surveying. Sensors 17, 2703 (2017). https://doi.org/10.3390/s17122703

    Article  Google Scholar 

  6. Rokhmana, C.A.: The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia. Procedia Environ. Sci. 24, 245–253 (2015). https://doi.org/10.1016/j.proenv.2015.03.032

    Article  Google Scholar 

  7. Yue, J., et al.: Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens. (Basel) 9, 708 (2017). https://doi.org/10.3390/rs9070708

  8. Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., Moscholios, I.: A compilation of UAV applications for precision agriculture. Comput. Netw. 172, 107148 (2020). https://doi.org/10.1016/j.comnet.2020.107148

    Article  Google Scholar 

  9. Gašparović, M., Zrinjski, M., Barković, Đ., Radočaj, D.: An automatic method for weed mapping in oat fields based on UAV imagery. Comput. Electron. Agric. 173, 105385 (2020). https://doi.org/10.1016/j.compag.2020.105385

    Article  Google Scholar 

  10. Allred, B., et al.: Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes. Agric. Water Manag. 232, 106036 (2020). https://doi.org/10.1016/j.agwat.2020.106036

    Article  Google Scholar 

  11. Simic Milas, A., Romanko, M., Reil, P., Abeysinghe, T., Marambe, A.: The importance of leaf area index in mapping chlorophyll content of corn under different agricultural treatments using UAV images. Int. J. Remote Sens. 39, 5415–5431 (2018). https://doi.org/10.1080/01431161.2018.1455244

    Article  Google Scholar 

  12. Torres-Sánchez, J., Peña, J.M., de Castro, A.I., López-Granados, F.: Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 103, 104–113 (2014). https://doi.org/10.1016/j.compag.2014.02.009

    Article  Google Scholar 

  13. Santesteban, L.G., Di Gennaro, S.F., Herrero-Langreo, A., Miranda, C., Royo, J.B., Matese, A.: High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag. 183, 49–59 (2017). https://doi.org/10.1016/j.agwat.2016.08.026

    Article  Google Scholar 

  14. Holman, F., Riche, A., Michalski, A., Castle, M., Wooster, M., Hawkesford, M.: High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. (Basel) 8, 1031 (2016). https://doi.org/10.3390/rs8121031

  15. Herwitz, S.R., et al.: Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Comput. Electron. Agric. 44, 49–61 (2004). https://doi.org/10.1016/j.compag.2004.02.006

    Article  Google Scholar 

  16. Huang, H., Deng, J., Lan, Y., Yang, A., Deng, X., Zhang, L.: A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS ONE 13, e0196302 (2018). https://doi.org/10.1371/journal.pone.0196302

    Article  Google Scholar 

  17. Kerkech, M., Hafiane, A., Canals, R.: Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Comput. Electron. Agric. 174, 105446 (2020). https://doi.org/10.1016/j.compag.2020.105446

    Article  Google Scholar 

  18. Niknejad, N., Ismail, W., Bahari, M., Hendradi, R., Salleh, A.Z.: Mapping the research trends on blockchain technology in food and agriculture industry: a bibliometric analysis. Environ. Technol. Innov. 21, 101272 (2021). https://doi.org/10.1016/j.eti.2020.101272

    Article  Google Scholar 

  19. Velasco-Muñoz, J., Aznar-Sánchez, J., Belmonte-Ureña, L., López-Serrano, M.: Advances in water use efficiency in agriculture: a bibliometric analysis. Water (Basel) 10, 377 (2018). https://doi.org/10.3390/w10040377

  20. Luo, J., Han, H., Jia, F., Dong, H.: Agricultural Co-operatives in the western world: a bibliometric analysis. J. Clean. Prod. 273, 122945 (2020). https://doi.org/10.1016/j.jclepro.2020.122945

    Article  Google Scholar 

  21. Ragazou, K., Garefalakis, A., Zafeiriou, E., Passas, I.: Agriculture 5.0: a new strategic management mode for a cut cost and an energy efficient agriculture sector. Energies (Basel) 15, 3113 (2022). https://doi.org/10.3390/en15093113

  22. Bouchenine, A., Abdel-Aal, M.A.M.: Towards supply chain resilience with additive manufacturing: a bibliometric survey. Supply Chain Anal. 2, 100014 (2023). https://doi.org/10.1016/j.sca.2023.100014

    Article  Google Scholar 

  23. Khuram, S., Rehman, C., Nasir, N., Elahi, N.S.: A bibliometric analysis of quality assurance in higher education institutions: implications for assessing university’s societal impact. Eval. Program Plann. 99, 102319 (2023). https://doi.org/10.1016/j.evalprogplan.2023.102319

    Article  Google Scholar 

  24. Abdollahi, A., Ghaderi, Z., Béal, L., Cooper, C.: The intersection between knowledge management and organizational learning in tourism and hospitality: a bibliometric analysis. J. Hosp. Tour. Manag. 55, 11–28 (2023). https://doi.org/10.1016/j.jhtm.2023.02.014

    Article  Google Scholar 

  25. Ma, L., et al.: Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers. ISPRS Int. J. Geoinf. 6, 51 (2017). https://doi.org/10.3390/ijgi6020051

    Article  Google Scholar 

  26. Chakraborty, M., Khot, L.R., Sankaran, S., Jacoby, P.W.: Evaluation of mobile 3D light detection and ranging based canopy mapping system for tree fruit crops. Comput. Electron. Agric. 158, 284–293 (2019). https://doi.org/10.1016/j.compag.2019.02.012

    Article  Google Scholar 

  27. Nevavuori, P., Narra, N., Linna, P., Lipping, T.: Crop yield prediction using multitemporal UAV data and spatio-temporal deep learning models. Remote Sens. (Basel) 12, 4000 (2020). https://doi.org/10.3390/rs12234000

  28. Chhikara, P., Tekchandani, R., Kumar, N., Chamola, V., Guizani, M.: DCNN-GA: a deep neural net architecture for navigation of UAV in indoor environment. IEEE Internet Things J. 8, 4448–4460 (2021). https://doi.org/10.1109/JIOT.2020.3027095

    Article  Google Scholar 

  29. Bose, S., Mazumdar, A., Basu, S.: Evolution of groundwater quality assessment on urban area- a bibliometric analysis. Groundw. Sustain. Dev. 20, 100894 (2023). https://doi.org/10.1016/j.gsd.2022.100894

    Article  Google Scholar 

  30. Miswan, M.S., Hamdan, R., Roffe, N.I., Wurochekke, A.A.: Land used mapping using unmanned aerial vehicle (UAV) along parit rasipan drainage system. Int. J. Sustain. Constr. Eng. Technol. 13 (2022). https://doi.org/10.30880/ijscet.2022.13.04.025

  31. Park, S., Ryu, D., Fuentes, S., Chung, H., O’Connell, M., Kim, J.: Mapping very-high-resolution evapotranspiration from unmanned aerial vehicle (UAV) imagery. ISPRS Int J Geoinf. 10, 211 (2021). https://doi.org/10.3390/ijgi10040211

    Article  Google Scholar 

  32. Tocci, F., et al.: Advantages in using colour calibration for orthophoto reconstruction. Sensors 22, 6490 (2022). https://doi.org/10.3390/s22176490

    Article  Google Scholar 

  33. El Hoummaidi, L., Larabi, A., Alam, K.: Using unmanned aerial systems and deep learning for agriculture mapping in Dubai. Heliyon. 7, e08154 (2021). https://doi.org/10.1016/j.heliyon.2021.e08154

    Article  Google Scholar 

  34. Tagarakis, A.C., Filippou, E., Kalaitzidis, D., Benos, L., Busato, P., Bochtis, D.: Proposing UGV and UAV systems for 3D mapping of orchard environments. Sensors 22, 1571 (2022). https://doi.org/10.3390/s22041571

    Article  Google Scholar 

  35. Grau, J., et al.: Improved accuracy of riparian zone mapping using near ground unmanned aerial vehicle and photogrammetry method. Remote Sens (Basel). 13, 1997 (2021). https://doi.org/10.3390/rs13101997

  36. de Camargo, T., Schirrmann, M., Landwehr, N., Dammer, K.-H., Pflanz, M.: Optimized deep learning model as a basis for fast UAV mapping of weed species in winter wheat crops. Remote Sens. (Basel) 13, 1704 (2021). https://doi.org/10.3390/rs13091704

  37. Deng, J., Zhong, Z., Huang, H., Lan, Y., Han, Y., Zhang, Y.: Lightweight semantic segmentation network for real-time weed mapping using unmanned aerial vehicles. Appl. Sci. 10, 7132 (2020). https://doi.org/10.3390/app10207132

    Article  Google Scholar 

  38. Jiang, R., et al.: UAV-based partially sampling system for rapid NDVI mapping in the evaluation of rice nitrogen use efficiency. J. Clean. Prod. 289, 125705 (2021). https://doi.org/10.1016/j.jclepro.2020.125705

    Article  Google Scholar 

  39. Manish, R., Lin, Y.-C., Ravi, R., Hasheminasab, S.M., Zhou, T., Habib, A.: Development of a miniaturized mobile mapping system for in-row, under-canopy phenotyping. Remote Sens. (Basel) 13, 276 (2021). https://doi.org/10.3390/rs13020276

  40. López-Granados, F., et al.: Monitoring vineyard canopy management operations using UAV-acquired photogrammetric point clouds. Remote Sens. (Basel) 12, 2331 (2020). https://doi.org/10.3390/rs12142331

  41. Feng, Q., et al.: Multi-temporal unmanned aerial vehicle remote sensing for vegetable mapping using an attention-based recurrent convolutional neural network. Remote Sens. (Basel). 12, 1668 (2020). https://doi.org/10.3390/rs12101668

  42. Chew, R., et al.: Deep neural networks and transfer learning for food crop identification in UAV images. Drones. 4, 7 (2020). https://doi.org/10.3390/drones4010007

    Article  Google Scholar 

  43. de Castro, A.I., et al.: Mapping cynodon dactylon infesting cover crops with an automatic decision tree-OBIA procedure and UAV imagery for precision viticulture. Remote Sens. (Basel) 12, 56 (2019). https://doi.org/10.3390/rs12010056

  44. Gabrlik, P., Lazna, T., Jilek, T., Sladek, P., Zalud, L.: An automated heterogeneous robotic system for radiation surveys: design and field testing. J. Field Robot. 38, 657–683 (2021). https://doi.org/10.1002/rob.22010

    Article  Google Scholar 

  45. Rangarajan, A.K., Balu, E.J., Boligala, M.S., Jagannath, A., Ranganathan, B.N.: A low-cost UAV for detection of Cercospora leaf spot in okra using deep convolutional neural network. Multimed Tools Appl. 81, 21565–21589 (2022). https://doi.org/10.1007/s11042-022-12464-4

    Article  Google Scholar 

  46. Tian, Y., et al.: Search and rescue under the forest canopy using multiple UAVs. Int. J. Rob. Res. 39, 1201–1221 (2020). https://doi.org/10.1177/0278364920929398

    Article  Google Scholar 

  47. Wang, T., Chen, B., Zhang, Z., Li, H., Zhang, M.: Applications of machine vision in agricultural robot navigation: a review. Comput. Electron. Agric. 198, 107085 (2022). https://doi.org/10.1016/j.compag.2022.107085

    Article  Google Scholar 

  48. Yang, Z., et al.: UAV remote sensing applications in marine monitoring: knowledge visualization and review. Sci. Total Environ. 838, 155939 (2022). https://doi.org/10.1016/j.scitotenv.2022.155939

    Article  Google Scholar 

  49. Valente, J., Hiremath, S., Ariza-Sentís, M., Doldersum, M., Kooistra, L.: Mapping of Rumex obtusifolius in nature conservation areas using very high resolution UAV imagery and deep learning. International J. Appl. Earth Observ. Geoinform. 112, 102864 (2022). https://doi.org/10.1016/j.jag.2022.102864

  50. Nex, F., et al.: UAV in the advent of the twenties: where we stand and what is next. ISPRS J. Photogramm. Remote. Sens. 184, 215–242 (2022). https://doi.org/10.1016/j.isprsjprs.2021.12.006

    Article  Google Scholar 

  51. Edulakanti, S.R., Ganguly, S.: Review article: the emerging drone technology and the advancement of the Indian drone business industry. J. High Technol. Manag. Res. 34, 100464 (2023). https://doi.org/10.1016/j.hitech.2023.100464

  52. Stöcker, C., Bennett, R., Koeva, M., Nex, F., Zevenbergen, J.: Scaling up UAVs for land administration: towards the plateau of productivity. Land Use Policy 114, 105930 (2022). https://doi.org/10.1016/j.landusepol.2021.105930

    Article  Google Scholar 

  53. Volovelsky, U.: Civilian uses of unmanned aerial vehicles and the threat to the right to privacy – An Israeli case study. Comput. Law Secur. Rev. 30, 306–320 (2014). https://doi.org/10.1016/j.clsr.2014.03.008

    Article  Google Scholar 

  54. Kayad, A., et al.: How many gigabytes per hectare are available in the digital agriculture era? A digitization footprint estimation. Comput. Electron. Agric. 198, 107080 (2022). https://doi.org/10.1016/j.compag.2022.107080

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Escandón-Panchana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Escandón-Panchana, P., Herrera-Franco, G., Martínez Cuevas, S., Morante-Carballo, F. (2024). Prospects of UAVs in Agricultural Mapping. In: Florez, H., Leon, M. (eds) Applied Informatics. ICAI 2023. Communications in Computer and Information Science, vol 1874. Springer, Cham. https://doi.org/10.1007/978-3-031-46813-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46813-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46812-4

  • Online ISBN: 978-3-031-46813-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics