Skip to main content

TP53 Genetic Testing and Personalized Nutrition Service

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1874))

Included in the following conference series:

  • 276 Accesses

Abstract

TP53 is one of the tumor suppressor genes found to be highly correlated with human tumor development, this gene can sense stress or damage to cells and prevent cell division or trigger cell death, thereby preventing the proliferation of damaged cells. The P53 protein encoded by TP53 has an anti-tumor effect and is known as the “guardian of the genome”. The mutation of TP53 gene eliminates a key cell safety mechanism, making it the trigger of cancer. In this paper, we first described the relationship between TP53 gene and tumors, and discussed the application of TP53 gene in tumor prediction and treatment, then we developed a TP53 genetic testing service to evaluate the cancer suppression ability of tumors, so that to help individuals to establish a scientific and reasonable lifestyle in a timely manner, and better grasp the initiative of health. Further, we describe the interaction between TP53 gene and nutrition and its impact on the occurrence and development of cancer. Finally, based on the analysis of the genetic testing results and food frequency questionnaires, we developed a personalized nutrition service to reduce the risk of developing the diseases with high genetic risk score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaur, R.P., Vasudeva, K., Kumar, R., Munshi, A.: Role of p53 gene in breast cancer: focus on mutation spectrum and therapeutic strategies. Curr. Pharm. Des. 24(30), 3566–3575 (2018)

    Article  Google Scholar 

  2. DeLeo, A.B., Jay, G., Appella, E., et al.: Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc. Natl. Acad. Sci. U.S.A. 76(5), 2420–4 (1979)

    Article  Google Scholar 

  3. Levine, A.J., Oren, M.: The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 9(10), 749–58 (2009)

    Article  Google Scholar 

  4. Finlay, C.A., Hinds, P.W., Levine, A.J.: The p53 proto-oncogene can act as a suppressor of transformation. Cell 57, 1083–1093 (1989)

    Article  Google Scholar 

  5. Baugh, E.H., Ke, H., Levine, A.J., et al.: Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25(1), 154–160 (2018)

    Article  Google Scholar 

  6. Lane, D.P.: p53, guardian of the genome. Nature 358(6381), 15–6 (1992)

    Article  Google Scholar 

  7. Donehower, L.A., Soussi, T., Korkut, A., et al.: Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 28(5), 1370-1384.e5 (2019)

    Article  Google Scholar 

  8. Schneider, K., Zelley, K., Nichols, K.E., Garber, J.: Li-Fraumeni syndrome. In: Adam, M.P., et al. (eds.) GeneReviews [Internet]. University of Washington, Seattle, Seattle (WA) (1999). Accessed 21 Nov 2019

    Google Scholar 

  9. Olivier, M., Hollstein, M., Hainaut, P.: TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2(1), a001008 (2010)

    Article  Google Scholar 

  10. Petitjean, A., Mathe, E., Kato, S., et al.: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28(6), 622–9 (2007)

    Article  Google Scholar 

  11. Wang, Y., Helland, A., Holm, R., et al.: TP53 mutations in early-stage ovarian carcinoma, relation to long-term survival. Br. J. Cancer 90, 678–685 (2004)

    Article  Google Scholar 

  12. Langerod, A., Zhao, H., Borgan, O., et al.: TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res. 9, R30 (2007)

    Article  Google Scholar 

  13. Li, F.P., Fraumeni, J.F.J., et al.: A cancer family syndrome in twenty-four kindreds. Cancer Res. 48, 5358–5362 (1988)

    Google Scholar 

  14. Olivier, M., Goldgar, D.E., Sodha, N., et al.: Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res. 63, 6643–6650 (2003)

    Google Scholar 

  15. Lalloo, F., Varley, J., Moran, A., et al.: BRCA1, BRCA2 and TP53 mutations in very early-onset breast cancer with associated risks to relatives. Eur. J. Cancer 42, 1143–1150 (2006)

    Article  Google Scholar 

  16. Gonzalez, K.D., Noltner, K.A., Buzin, C.H., et al.: Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J. Clin. Oncol. 27, 1250–1256 (2009)

    Article  Google Scholar 

  17. Shi, H., Tan, S.J., Zhong, H., et al.: Winter temperature and UV are tightly linked to genetic changes in the p53 tumor suppressor pathway in Eastern Asia. Am. J. Hum. Genet. 84, 534–541 (2009)

    Article  Google Scholar 

  18. Mohammed Basabaeen, A.A., Abdelgader, E.A., Babekir, E.A., et al.: TP53 Gene 72 Arg/Pro (rs1042522) single nucleotide polymorphism contribute to increase the risk of B-Chronic lymphocytic leukemia in the Sudanese population. Asian Pac. J. Cancer Prev. 20(5), 1579–1585 (2019)

    Article  Google Scholar 

  19. Zhang, L., Wang, Y., Qin, Z., et al.: TP53 codon 72 Polymorphism and bladder cancer risk: a meta-analysis and emphasis on the role of tumor or smoking status. J. Cancer 9(19), 3522–3531 (2018)

    Article  Google Scholar 

  20. Lu, Y., et al.: Association of p53 codon 72 polymorphism with prostate cancer: an update meta-analysis. Tumor Biol. 35(5), 3997–4005 (2014). https://doi.org/10.1007/s13277-014-1657-y

    Article  Google Scholar 

  21. Wang, X., Liu, Z.: Systematic meta-analysis of genetic variants associated with osteosarcoma susceptibility. Medicine (Baltimore) 97(38), e12525 (2018)

    Article  Google Scholar 

  22. Naccarati, A., Pardini, B., Polakova, V., et al.: Genotype and haplotype analysis of TP53 gene and the risk of pancreatic cancer: an association study in the Czech Republic. Carcinogenesis 31(4), 666–70 (2010)

    Article  Google Scholar 

  23. Cao, J., Chen, Z., Tian, C., et al.: A shared susceptibility locus in the p53 gene for both gastric and esophageal cancers in a northwestern Chinese population. Genet. Test. Mol. Biomarkers 24(12), 804–811 (2020)

    Article  Google Scholar 

  24. Li, Y., Chang, S.C., Niu, R., et al.: TP53 genetic polymorphisms, interactions with lifestyle factors and lung cancer risk: a case control study in a Chinese population. BMC Cancer 13, 607 (2013)

    Article  Google Scholar 

  25. Egan, K.M., Nabors, L.B., Olson, J.J., et al.: Rare TP53 genetic variant associated with glioma risk and outcome. J. Med. Genet. 49(7), 420–1 (2012)

    Article  Google Scholar 

  26. Guan, X., Wang, L.E., Liu, Z., et al.: Association between a rare novel TP53 variant (rs78378222) and melanoma, squamous cell carcinoma of head and neck and lung cancer susceptibility in non-Hispanic Whites. J. Cell Mol. Med. 17(7), 873–8 (2013)

    Article  Google Scholar 

  27. Schildkraut, J.M., Iversen, E.S., Wilson, M.A., et al.: Association between DNA damage response and repair genes and risk of invasive serous ovarian cancer. PLoS ONE 5(4), e10061 (2010)

    Article  Google Scholar 

  28. Wang, S., Zhang, K., Tang, L., et al.: Association between single-nucleotide polymorphisms in breast cancer susceptibility genes and clinicopathological characteristics. Clin. Epidemiol. 13, 103–112 (2021)

    Article  Google Scholar 

  29. Zhao, Z., Wan, J., Guo, M., et al.: Expression and prognostic significance of m6A-related genes in TP53-mutant non-small-cell lung cancer. J. Clin. Lab. Anal. 36(1), e24118 (2022)

    Article  Google Scholar 

  30. Seemann, S., Maurici, D., Olivier, M., et al.: The tumor suppressor gene TP53: implications for cancer management and therapy. Crit. Rev. Clin. Lab. Sci. 41(5–6), 551–83 (2004)

    Article  Google Scholar 

  31. Igo, R.P., Jr., Kinzy, T.G., Cooke Bailey, J.N.: Genetic risk scores. Curr. Protoc. Hum. Genet. 104(1), e95 (2019)

    Article  Google Scholar 

  32. Ruan, Y., Lin, Y., Feng, Y., et al.: Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 57–3580 (2022)

    Google Scholar 

  33. Perri, F., Pisconti, S., Scarpati, G.D.V.: p53 mutations and cancer: a tight linkage. Ann. Transl. Med. 4(24), 522 (2016)

    Article  Google Scholar 

  34. Levine, A.J.: p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20, 471–480 (2020)

    Article  Google Scholar 

  35. Xiong, Y., Xu, S., Fu, B., et al.: Vitamin C-induced competitive binding of HIF-1\(\alpha \) and p53 to ubiquitin E3 ligase CBL contributes to anti-breast cancer progression through p53 deacetylation. Food Chem. Toxicol. 168, 113321 (2022)

    Article  Google Scholar 

  36. Kim, J., Lee, S.D., Chang, B., et al.: Enhanced antitumor activity of vitamin C via p53 in cancer cells. Free Radic. Biol. Med. 53(8), 1607–15 (2012)

    Article  Google Scholar 

  37. Li, M., Li, L., Zhang, L., et al.: 1,25-Dihydroxyvitamin D3 suppresses gastric cancer cell growth through VDR- and mutant p53-mediated induction of p21. Life Sci. 15(179), 88–97 (2017)

    Article  Google Scholar 

  38. Reichrath, J., Reichrath, S., Vogt, T., Romer, K.: Crosstalk between Vitamin D and p53 signaling in cancer: an update. Adv. Exp. Med. Biol. 1268, 307–318 (2020)

    Article  Google Scholar 

  39. Stambolsky, P., Tabach, Y., Fontemaggi, G.: Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell 17(3), 273–85 (2010)

    Article  Google Scholar 

  40. Liu, T., Yang, H., Mou, Y., Zhang, H.: Correlation of changes in HIF-1\(\alpha \) and p53 expressions with vitamin B3 deficiency in skin cancer patients. G. Ital. Dermatol. Venereol. 154(5), 513–518 (2019)

    Google Scholar 

  41. Affret, A., El Fatouhi, D., Dow, C., et al.: Relative validity and reproducibility of a new 44-item diet and food frequency questionnaire among adults: online assessment. J. Med. Internet Res. 20(7), e227 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This research project is supported by Science Foundation of Beijing Language and Culture University (supported by “the Fundamental Research Funds for the Central Universities”) (Approval number: 23YJ080003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J. (2024). TP53 Genetic Testing and Personalized Nutrition Service. In: Florez, H., Leon, M. (eds) Applied Informatics. ICAI 2023. Communications in Computer and Information Science, vol 1874. Springer, Cham. https://doi.org/10.1007/978-3-031-46813-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46813-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46812-4

  • Online ISBN: 978-3-031-46813-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics