Abstract
The generation of schedules is a complex challenge, particularly in academic institutions aiming for equitable scheduling. The goal is to achieve fair and balanced schedules that meet the requirements of all parties involved, such as workload, class distribution, shifts, and other relevant criteria. To address this challenge, a genetic algorithm specifically designed for optimal schedule generation has been proposed as a solution. Adjusting genetic algorithm parameters impacts performance, and employing parameter optimization techniques effectively tackles this issue. This work introduces a genetic algorithm for optimal schedule generation, utilizing suitable encoding and operators, and evaluating quality through fitness techniques. Optimization efforts led to reduced execution time, improved solution quality, and positive outcomes like faster execution, fewer generations, increased stability, and convergence to optimal solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kakkar, M.K., Singla, J., Garg, N., Gupta, G., Srivastava, P., Kumar, A.: Class schedule generation using evolutionary algorithms. J. Phys. Conf. Ser. 1950(1), 012067. IOP Publishing (2021)
Bimantara, I., Yuhana, U.L., Supriana, I.W., Pardede, E.: An intelligent system based on evolutionary algorithm for scheduling university course timetable. Wayan and Pardede, Eric, An Intelligent System Based on Evolutionary Algorithm for Scheduling University Course Timetable
Adesagba, O.E.: Development of an examination timetabling system using genetic algorithm (2021)
Fuenmayor, R., et al.: A genetic algorithm for scheduling laboratory rooms: a case study. In: Florez, H., Gomez, H. (eds.) Applied Informatics. ICAI 2022. CCIS, vol. 1643, pp. 3–14. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19647-8_1
Prosad, R., Khan, M., Rahman, A., Ahammad, I.: Design of class routine and exam hall invigilation system based on genetic algorithm and greedy approach. Asian J. Res. Comput. Sci. 13(3), 28–44 (2022)
Amindoust, A., Asadpour, M., Shirmohammadi, S.: A hybrid genetic algorithm for nurse scheduling problem considering the fatigue factor. J. Healthc. Eng. 2021 (2021)
Terán-Pozo, E.E., Romero-Fernández, A.J., Sandoval-Pillajo, A.L., Freire-Lescano, L.R.: Influencia de los algoritmos genéticos en la generación de horarios en unidad educativa. CIENCIAMATRIA 8(4), 876–891 (2022)
Xu, J.: Improved genetic algorithm to solve the scheduling problem of college English courses. Complexity 2021, 1–11 (2021)
Henry Nelson, A., Fuentes, F.J.A., Candelaria, M.R.H.: La planificación docente utilizando algoritmos genéticos. Revista Didasc@ lia: Didáctica y Educación 12(4) (2021)
Gálvez Toledo, Y.A., et al.: Asignación de horarios académicos para la escuela de ingeniería civil en computación de la universidad de talca utilizando algoritmos genéticos, Ph.D. dissertation, Universidad de Talca (Chile). Escuela de Ingeniería Civil en Computación (2021)
Gomez, E.F.: Programación de horarios universitarios jerárquicos 2019 (2021)
Contreras, L.A.C.: Búsqueda de soluciones factibles para el problema de horarios de cursos universitarios (2022)
Pitoňáková, K.: Class schedule generator
Nugroho, A.K., Permadi, I., Yasifa, A.R., et al.: Optimizing course scheduling faculty of engineering unsoed using genetic algorithms. JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) 7(2), 91–98 (2022)
Acuña-Galván, I., Lezama-León, E., Bolaños-Rodríguez, E., Solís-Galindo, A.E., Vega-Cano, G.Y.: Generación de horarios mediante algoritmos genéticos. Boletín Científico INVESTIGIUM de la Escuela Superior de Tizayuca 8(Especial), 51–57 (2022)
Suresh, K., Joseph, B., et al.: Patient scheduling system for medical treatment using genetic algorithm. J. Popul. Ther. Clin. Pharmacol. 30(8), 268–273 (2023)
Base de datos. https://n9.cl/f5vy6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Alarcón, J. et al. (2024). Exploring the Potential of Genetic Algorithms for Optimizing Academic Schedules at the School of Mechatronic Engineering: Preliminary Results. In: Florez, H., Leon, M. (eds) Applied Informatics. ICAI 2023. Communications in Computer and Information Science, vol 1874. Springer, Cham. https://doi.org/10.1007/978-3-031-46813-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-46813-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46812-4
Online ISBN: 978-3-031-46813-1
eBook Packages: Computer ScienceComputer Science (R0)