Skip to main content

Optimal Design of Braille Display Based on Adaptive-Network-based Fuzzy Inference

  • Conference paper
  • First Online:
Haptic Interaction (AsiaHaptics 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14063))

Included in the following conference series:

  • 109 Accesses

Abstract

Although electromagnetic braille displays have fast response, reliable performance, and low price, they also have high power consumption and are susceptible to heat generation. For the development of a braille display, in this paper, we propose a solution based on an adaptive network-based fuzzy inference system(ANFIS). First, we analyze and optimize the driving voltage of the electromagnetic driver, the resistance value of the electromagnetic coil, the fingertip touch support force, and the operation temperature of the device, and we describe the development of a prototype of an electromagnetic braille display with a hierarchical structure. We verified experimentally that the device developed in this study can provide a fingertip touch support force of more than 150 mN, with a contact response frequency of 35.8 Hz, while maintaining a temperature of 32\(^\circ \)C, which is suitable for fingertip contact after a long operational period. In addition, the correct display rate of the braille characters can reach 100%. All of these specifications meet the design requirements and can provide users with an optimal braille reading.

This paper is supported by the National Key Research and Development Program of China (2021YFF0600203); the Key Research Project of the Zhejiang Lab (K2022PG1BB01,2022MG0AC04); the Zhejiang Provincial Natural Science Foundation (LY20F020019, LQ19F020012); the Zhejiang Basic Public Welfare Research Project (LGF19E050005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World health organization, Global data on visual impairments 2010. Accessed 28 Dec 2020. https://www.who.int/blindness/GLOBALDATAFINALforweb.pdf

  2. Xie, X., Zaitsev, Y., Velásquez-García, L.F., et al.: Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile display. J. Micromechan. Microeng. 24(12), 125014 (2014)

    Google Scholar 

  3. Metec, A.: Braille-cell B11. https://www.metec-ag.de/downloads/b11-rohs.pdf. Accessed 13 Dec 2021

  4. Voelkel, T., Weber, G., Baumann, U.: Computers Helping People with Special Needs. In: International Conference on Computers for Handicapped Persons, Linz, Austria, July. 9–11, pp. 835–842(2008)

    Google Scholar 

  5. Russomanno, A., O’Modhrain, S., Gillespie, R. B., et al.: Refreshing refreshable braille displays. IEEE Trans. Haptics. 8(3), 287–297 (2015)

    Google Scholar 

  6. Wu, X., Kim, S., Zhu, H., et al.: A refreshable braille cell based on pneumatic microbubble actuators. J. Microelectromech. Syst. 21(4), 908–916 (2012)

    Article  Google Scholar 

  7. Russomanno, A., Gillespie, R. B., O’Modhrain, S., et al.: Modeling pneumatic actuators for a refreshable tactile display. In: International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Versailles, France, June. 24–26, pp. 385–393 (2014)

    Google Scholar 

  8. Besse, N., Rosset, S., Zárate, J.J., Ferrari, E., et al.: Understanding graphics on a scalable latching assistive haptic display using a shape memory polymer membrane. IEEE Trans. Haptics 11(1), 30–38 (2018)

    Article  Google Scholar 

  9. Matsunaga, T., Totsu, K., Esashi, M., et al.: Tactile display using shape memory alloy microcoil actuator and magnetic latch mechanism. Displays 34(2), 89–94 (2013)

    Article  Google Scholar 

  10. Masuyama, S., Kawamura., A.: A novel electromagnetic linear actuator with inner and outer stators and one moving winding for tactile display. In: IEEE International Conference on Industrial Technology, Taipei Taiwan, China, May. 26, pp. 628–633 (2016)

    Google Scholar 

  11. Izhar, U., Albermani, F., Preethichandra, D.M.G., Sul, J., van Rensburg, P.A.J.: An electrothermally actuated MEMS braille dot. In: Wang, C.M., Ho, J.C.M., Kitipornchai, S. (eds.) ACMSM25. LNCE, vol. 37, pp. 985–993. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-7603-0_93

    Chapter  Google Scholar 

  12. Chakraborti, P., Toprakci, H., Yang, D., et al.: A compact dielectric elastomer tubular actuator for refreshable braille display. Sens. Actuators A-Phys. 179, 151–157 (2012)

    Article  Google Scholar 

  13. Qu, X., Ma, X., Shi, B., et al.: Refreshable braille display system based on triboelectric nanogenerator and dielectric elastomer. Adv. Func. Mater. 31, 2006612 (2021)

    Article  Google Scholar 

  14. VersaBraille. https://www.aph.org/. Accessed Jan 2022

  15. Kim, J., Han, B.K., Pyo, D., Ryu, S., et al.: Braille display for portable device using flip-latch structured electromagnetic actuator. IEEE Trans. Haptics 13(1), 59–65 (2021)

    Article  Google Scholar 

  16. Runyan, N.H., Carpi, F.: Seeking the ‘holy Braille’ display: might electromechanically active polymers be the solution. Expert Rev. Med. Devices 8(5), 529–532 (2011)

    Article  Google Scholar 

  17. Zarate, J.J., Shea, H.: Using pot-magnets to enable stable and scalable electromagnetic tactile displays. IEEE Trans. Haptics 10(1), 106–112 (2017)

    Article  Google Scholar 

  18. Blazie, D.: Refreshable Braille now and in the years ahead, Braille Monitor 43(1). https://www.nfb.org/Images/nfb/Publications/bm/bm00/bm0001/bm000110.htm. Accessed Jan 2022

  19. Chinese Braille, GB/T 15720–2008. https://www.bzko.com/std/180890.html. Accessed Jan 2022

  20. King, H. H., Donlin, R., Hannaford, B.: Perceptual thresholds for single vs. multi-finger haptic interaction. In: 2010 IEEE Haptics Symposium, 08 April, pp. 95–99 (2010)

    Google Scholar 

  21. Dosher, J., Hannaford, B.: Human interaction with small haptic effects. Teleoperators Virtual Environ. 14(3), 329–344 (2005)

    Article  Google Scholar 

  22. Louw, S., Kappers, A.M.L., Koenderink, J.J.: Active haptic detection and discrimination of shape. Perception Psychophys. 64(7), 1108–1119 (2002)

    Article  Google Scholar 

  23. Dewhirst, M.W., Viglianti, B.L., Lora-Michiels, M., Hanson, M., Hoopes, P.J.: Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int. J. Hyperthermia 19(3), 267–294 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhen Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, C., Jin, Z., Chen, K., Tao, W., Liang, H., Yang, W. (2023). Optimal Design of Braille Display Based on Adaptive-Network-based Fuzzy Inference. In: Wang, D., et al. Haptic Interaction. AsiaHaptics 2022. Lecture Notes in Computer Science, vol 14063. Springer, Cham. https://doi.org/10.1007/978-3-031-46839-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46839-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46838-4

  • Online ISBN: 978-3-031-46839-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics