Skip to main content

FSJP-Net: Foreground and Shape Joint Perception Network for Glomerulus Detection

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14350))

Included in the following conference series:

  • 464 Accesses

Abstract

Morphological changes in the glomerulus play a vital role in the diagnosis of kidney diseases. However, the detection of the glomerulus in the actual medical situation is challenging due to various factors such as lesions, tissue changes, and staining. These factors raise problems like high foreground-background similarity, blurred contours, and irregular shapes, thus pose difficulties for both physicians and Automatic computer detection. To address these challenges, we propose a foreground-aware feature extraction method, which is used to fully extract foreground information. Furthermore, we design the Foreground and Shape Joint Perception Network (FSJP-Net), a detection network that integrates object foreground information and shapes information, which improves the recall and precision of glomerular detection by fusing the extracted foreground and elliptical shape information from different feature extraction branches. The experiments demonstrate the effectiveness and superiority of our proposed method in detecting various categories of glomeruli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haas, M., et al.: A multicenter study of the predictive value of crescents in IGA nephropathy. J. Am. Soc. Nephrol. 28(2), 691–701 (2017)

    Article  Google Scholar 

  2. Farris, A.B., et al.: Morphometric and visual evaluation of fibrosis in renal biopsies. J. Am. Soc. Nephrol. 22(1), 176–186 (2011)

    Article  Google Scholar 

  3. D’Agati, V.D., Kaskel, F.J., Falk, R.J.: Focal segmental glomerulosclerosis. N. Engl. J. Med. 365(25), 2398–2411 (2011)

    Article  Google Scholar 

  4. Nyengaard, J., Bendtsen, T.: Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat. Rec. 232(2), 194–201 (1992)

    Article  Google Scholar 

  5. Puelles, V.G., Hoy, W.E., Hughson, M.D., Diouf, B., Douglas-Denton, R.N., Bertram, J.F.: Glomerular number and size variability and risk for kidney disease. Curr. Opin. Nephrol. Hypertens. 20(1), 7–15 (2011)

    Article  Google Scholar 

  6. Kato, T., et al.: Segmental hog: new descriptor for glomerulus detection in kidney microscopy image. BMC Bioinform. 16, 1–16 (2015)

    Article  Google Scholar 

  7. Simon, O., Yacoub, R., Jain, S., Tomaszewski, J.E., Sarder, P.: Multi-radial LBP features as a tool for rapid glomerular detection and assessment in whole slide histopathology images. Sci. Rep. 8(1), 2032 (2018)

    Article  Google Scholar 

  8. Ginley, B., Tomaszewski, J.E., Yacoub, R., Chen, F., Sarder, P.: Unsupervised labeling of glomerular boundaries using Gabor filters and statistical testing in renal histology. J. Med. Imaging 4(2), 021102–021102 (2017)

    Article  Google Scholar 

  9. Zhang, Y., et al.: U-net-and-a-half: convolutional network for biomedical image segmentation using multiple expert-driven annotations. arXiv preprint arXiv:2108.04658 (2021)

  10. Gallego, J., et al.: Glomerulus classification and detection based on convolutional neural networks. J. Imaging 4(1), 20 (2018)

    Article  MathSciNet  Google Scholar 

  11. Wilbur, D.C., Smith, M.L., Cornell, L.D., Andryushkin, A., Pettus, J.R.: Automated identification of glomeruli and synchronised review of special stains in renal biopsies by machine learning and slide registration: a cross-institutional study. Histopathology 79(4), 499–508 (2021)

    Article  Google Scholar 

  12. Kawazoe, Y., et al.: Faster R-CNN-based glomerular detection in multistained human whole slide images. J. Imaging 4(7), 91 (2018)

    Article  Google Scholar 

  13. Heckenauer, R., et al.: Real-time detection of glomeruli in renal pathology. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 350–355. IEEE (2020)

    Google Scholar 

  14. Weis, C.A., et al.: Assessment of glomerular morphological patterns by deep learning algorithms. J. Nephrol. 35(2), 417–427 (2022)

    Article  Google Scholar 

  15. Yao, X., Wang, X., Karaca, Y., Xie, J., Wang, S.: Glomerulus classification via an improved Googlenet. IEEE Access 8, 176916–176923 (2020)

    Article  Google Scholar 

  16. Yang, H., et al.: Circlenet: anchor-free detection with circle representation. arXiv preprint arXiv:2006.02474 (2020)

  17. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arxiv 2019. arXiv preprint arXiv:1904.07850 (2019)

  18. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  19. Zheng, Z., Zhong, Y., Wang, J., Ma, A.: Foreground-aware relation network for geospatial object segmentation in high spatial resolution remote sensing imagery. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4096–4105 (2020)

    Google Scholar 

  20. Chen, J., Zhang, Y., Wang, J., Zhou, X., He, Y., Zhang, T.: EllipseNet: anchor-free ellipse detection for automatic cardiac biometrics in fetal echocardiography. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 218–227. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_21

    Chapter  Google Scholar 

  21. Wang, T., Lu, C., Shao, M., Yuan, X., Xia, S.: Eldet: an anchor-free general ellipse object detector. In: Proceedings of the Asian Conference on Computer Vision, pp. 2580–2595 (2022)

    Google Scholar 

  22. Zhu, X., Lyu, S., Wang, X., Zhao, Q.: Tph-yolov5: improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2778–2788 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyu Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, Q., Hu, X., Chen, P., Xia, S. (2023). FSJP-Net: Foreground and Shape Joint Perception Network for Glomerulus Detection. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2023. Lecture Notes in Computer Science, vol 14350. Springer, Cham. https://doi.org/10.1007/978-3-031-46914-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46914-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46913-8

  • Online ISBN: 978-3-031-46914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics