Skip to main content

Predicting Shape Development: A Riemannian Method

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2023)

Abstract

Predicting the future development of an anatomical shape from a single baseline observation is a challenging task. But it can be essential for clinical decision-making. Research has shown that it should be tackled in curved shape spaces, as (e.g., disease-related) shape changes frequently expose nonlinear characteristics. We thus propose a novel prediction method that encodes the whole shape in a Riemannian shape space. It then learns a simple prediction technique founded on hierarchical statistical modeling of longitudinal training data. When applied to predict the future development of the shape of the right hippocampus under Alzheimer’s disease and to human body motion, it outperforms deep learning-supported variants as well as state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Whenever we say “smooth” we mean “infinitely often differentiable”.

  2. 2.

    https://adni.loni.usc.edu.

  3. 3.

    Standard multi-layer perceptrons showed similar performance to GANs.

  4. 4.

    We denote the coordinate representation in \(\mathbb {R}^d\) of a tangent vector v w.r.t. a fixed but arbitrary basis by [v].

References

  1. Ambellan, F., Hanik, M., von Tycowicz, C.: Morphomatics: geometric morphometrics in non-Euclidean shape spaces (2021). https://doi.org/10.12752/8544. https://morphomatics.github.io/

  2. Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  3. Bône, A., Colliot, O., Durrleman, S.: Learning the spatiotemporal variability in longitudinal shape data sets. Int. J. Comput. Vis. 128(12), 2873–2896 (2020). https://doi.org/10.1007/s11263-020-01343-w

    Article  MathSciNet  Google Scholar 

  4. Bône, A., Louis, M., Martin, B., Durrleman, S.: Deformetrica 4: an open-source software for statistical shape analysis. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 3–13. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_1

    Chapter  Google Scholar 

  5. Bône, A., et al.: Prediction of the progression of subcortical brain structures in Alzheimer’s disease from baseline. In: Cardoso, M.J., et al. (eds.) GRAIL/MFCA/MICGen -2017. LNCS, vol. 10551, pp. 101–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67675-3_10

    Chapter  Google Scholar 

  6. Calivá, F., Kamat, S., et al.: Surface spherical encoding and contrastive learning for virtual bone shape aging. Med. Image Anal. 77, 102388 (2022). https://doi.org/10.1016/j.media.2022.102388

    Article  Google Scholar 

  7. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995). https://doi.org/10.1006/cviu.1995.1004

    Article  Google Scholar 

  8. Ezuz, D., Ben-Chen, M.: Deblurring and denoising of maps between shapes. Comput. Graph. Forum 36(5), 165–174 (2017). https://doi.org/10.1111/cgf.13254

    Article  Google Scholar 

  9. Fishbaugh, J., Durrleman, S., Prastawa, M., Gerig, G.: Geodesic shape regression with multiple geometries and sparse parameters. Med. Image Anal. 39, 1–17 (2017). https://doi.org/10.1016/j.media.2017.03.008

    Article  MATH  Google Scholar 

  10. Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2013). https://doi.org/10.1007/s11263-012-0591-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Gerardin, E., Chételat, G., et al.: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 47(4), 1476–1486 (2009). https://doi.org/10.1016/j.neuroimage.2009.05.036

    Article  Google Scholar 

  12. Gerig, G., Fishbaugh, J., Sadeghi, N.: Longitudinal modeling of appearance and shape and its potential for clinical use. Med. Image Anal. 33, 114–121 (2016). https://doi.org/10.1016/j.media.2016.06.014

    Article  Google Scholar 

  13. Hanik, M., Hege, H.C., von Tycowicz, C.: A nonlinear hierarchical model for longitudinal data on manifolds. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022). https://doi.org/10.1109/ISBI52829.2022.9761465

  14. Lorenzi, M., Pennec, X.: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration. Int. J. Comput. Vis. 105(2), 111–127 (2013). https://doi.org/10.1007/s11263-012-0598-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Muralidharan, P., Fletcher, P.T.: Sasaki metrics for analysis of longitudinal data on manifolds. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1027–1034. IEEE (2012). https://doi.org/10.1109/CVPR.2012.6247780

  16. Nava-Yazdani, E., Hege, H.C., Sullivan, T.J., von Tycowicz, C.: Geodesic analysis in Kendall’s shape space with epidemiological applications. J. Math. Imaging Vis. 60, 549–559 (2020). https://doi.org/10.1007/s10851-020-00945-w

    Article  MathSciNet  MATH  Google Scholar 

  17. Nava-Yazdani, E., Hege, H.C., von Tycowicz, C.: A hierarchical geodesic model for longitudinal analysis on manifolds. J. Math. Imaging Vis. 64(4), 395–407 (2022). https://doi.org/10.1007/s10851-022-01079-x

    Article  MathSciNet  MATH  Google Scholar 

  18. Pennec, X., Sommer, S., Fletcher, P.T. (eds.): Riemannian Geometric Statistics in Medical Image Analysis. Academic Press, London (2020). https://doi.org/10.1016/C2017-0-01561-6

  19. Rasmussen, J., Langerman, H.: Alzheimer’s disease - why we need early diagnosis. Degenerative Neurol. Neuromuscul. Dis. 9, 123–130 (2019). https://doi.org/10.2147/DNND.S228939

    Article  Google Scholar 

  20. Rekik, I., Li, G., Lin, W., Shen, D.: Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing. Med. Image Anal. 28, 1–12 (2016). https://doi.org/10.1016/j.media.2015.10.007

    Article  Google Scholar 

  21. von Tycowicz, C., Ambellan, F., Mukhopadhyay, A., Zachow, S.: An efficient Riemannian statistical shape model using differential coordinates. Med. Image Anal. 43, 1–9 (2018). https://doi.org/10.1016/j.media.2017.09.004

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by grants from the European H2020 Marie Sklodowska-Curie action (grant no. 101003403) and the Scientific and Technological Research Council of Turkey under the TUBITAK 2232 Fellowship for Outstanding Researchers (no. 118C288) (https://basira-lab.com/normnets/ & https://basira-lab.com/reprime/). We are grateful for the funding by DFG (Deutsche Forschungsgemeinschaft (DFG) through Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689)) and BMBF (Bundesministerium für Bildung und Forschung (BMBF) through BIFOLD - The Berlin Institute for the Foundations of Learning and Data (ref. 01IS18025A and ref 01IS18037A)).

Data collection and sharing for this project was funded by the ADNI (adni.loni.usc.edu) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Türkseven, D., Rekik, I., von Tycowicz, C., Hanik, M. (2023). Predicting Shape Development: A Riemannian Method. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2023. Lecture Notes in Computer Science, vol 14350. Springer, Cham. https://doi.org/10.1007/978-3-031-46914-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46914-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46913-8

  • Online ISBN: 978-3-031-46914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics